Page Header

A Comprehensive Review of Approaches in Carbon Capture, and Utilization to Reduce Greenhouse Gases

Ijlal Raheem, Atthasit Tawai, Suksun Amornraksa, Malinee Sriariyanun, Ankit Joshi, Madhulika Gupta, Wasinee Pongprayoon, Debraj Bhattacharyya, Sunil Kumar Maity

Abstract


Addressing atmospheric CO2 levels is crucial for mitigating global warming and promoting sustainable fossil fuel use. This review explores various CO2 capture strategies, including pre-combustion, post-combustion, oxy-fuel combustion, direct air capture, chemical looping, and polymeric membranes. Each strategy is critically evaluated in terms of its advantages, limitations, and overall effectiveness. Additionally, this study discusses advanced separation techniques for captured CO2, emphasizing recent innovations in membrane technology integrated with cryogenic processes. This integration has the potential to economically extract CO2 from diverse industrial processes, offering significant benefits in terms of operational cost reduction and increased efficiency. A detailed market analysis is also presented to explore feasible CO2 utilization options, highlighting potential incentives and motivations for capturing CO2. Furthermore, the technological readiness level of various capture and separation techniques is assessed, offering insights into their development and progress over time. This comprehensive analysis aims to support the advancement of effective and economically viable CO2 management solutions, contributing to a more sustainable and climate-resilient future.

Keywords



[1]        T. Ahmad and D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973–1991, 2020.

[2]        A. Kausar and I. Ahmad, “Footmarks of graphene nanocomposites towards carbon capturing—Next membrane materials,” Next Materials, vol. 5, 2024, Art. no. 100276.

[3]        A. Kona, P. Bertoldi, F. Monforti-Ferrario, S. Rivas, and J. F. Dallemand, “Covenant of mayors signatories leading the way towards 1.5 degree global warming pathway,” Sustainable Cities and Society, vol. 41, pp. 568–575, 2018.

[4]        Z. Wang, Z. Huang, Y. Huang, C. Wittram, Y. Zhuang, S. Wang, and B.Nie, “Synergy of carbon capture, waste heat recovery and hydrogen production for industrial decarbonisation,” Energy Conversion and Management, vol. 312, 2024, Art. no. 118568.

[5]        D. Bose, R. Bhattacharya, T. Kaur, R. Pandya, A. Sarkar, A. Ray, S.Mondal, A.Mondal, P.Ghosh, and R. I. Chemudupati, “Innovative approaches for carbon capture and storage as crucial measures for emission reduction within industrial sectors,” Carbon Capture Science & Technology, vol. 12, 2024, Art. no. 100238.

[6]        Energy Information Administration (US), Annual Energy Outlook 2007: With Projections To 2030. Washington, DC: Government Printing Office, 2007.

[7]        M. Sriariyanun and B. Dharmalingam, “From waste to wealth: Challenges in producing value-added biochemicals from lignocellulose biorefinery,” Journal of Applied Science and Emerging Technology, vol. 22, no. 3, 2023, Art. no. e900001.

[8]        Y. Wang, Y. Liu, and B. Gu, “COP26: Progress, challenges, and outlook,” Springer, vol. 39, no. 8, pp. 1209–1216, 2022.

[9]        H, Dang, B. Guan, J. Chen, Z. Ma, Y. Chen, J. Zhang, Z. Guo, L. Chen, J. Hu, C. Yi, S. Yao, and Z. Huang, “Research on carbon dioxide capture materials used for carbon dioxide capture, utilization, and storage technology: A review,” Environmental Science and Pollution Research, vol. 31, pp. 33259–33302, 2024.

[10]     M. Kheirinik, S. Ahmed, and N. Rahmanian, “Comparative techno-economic analysis of carbon capture processes: Pre-combustion, post-combustion, and oxy-fuel combustion operations,” Sustainability, vol. 13, no. 24, 2021, Art. no. 13567.

[11]     Z. Sun, Q. Wu, C. Zhao, H. Li, and A. Zhang, “A review of NOx control by MILD-oxy combustion,” Journal of the Energy Institute, vol. 113, 2023, Art. no. 101502.

[12]     D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 426–443, 2014.

[13]     P. Wienchol, A. Szlęk, and M. Ditaranto, “Waste-to-energy technology integrated with carbon capture–Challenges and opportunities,” Energy, vol. 198, 2020, Art. no. 117352.

[14]     S. Areeya, E. J. Panakkal, M. Sriariyanun, T. Kangsadan, A. Tawai, S. Amornraksa, U. W. Hartley, and P. Yasurin, “A review on chemical pretreatment of lignocellulosic biomass for the production of bioproducts: Mechanisms, challenges and applications,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6767.

[15]     S. Areeya, E. J. Panakkal, P. Kunmanee, A. Tawai, S. Amornraksa, M. Sriariyanun, Kaoloun, N. Hartini, Y. S. Cheng, M. Kchaou, S. Dasari, and M. P. Gundupalli, “A review of sugarcane biorefinery: From waste to value-added products,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024,  Art. no. 7402.

[16]     L. Rosa, D. L. Sanchez, and M. Mazzotti, “Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe,” Energy & Environmental Science, vol. 14, no. 5, pp. 3086–3097, 2021.

[17]     R. López, C. Fernández, O. Martínez, and M. Sánchez, “Techno-economic analysis of a 15 MW corn-rape oxy-combustion power plant,” Fuel Processing Technology, vol. 142, pp. 296–304, 2016.

[18]     R. Falkenstein-Smith, P. Zeng, and J. Ahn, “Investigation of oxygen transport membrane reactors for oxy-fuel combustion and carbon capture purposes,” Proceedings of the Combustion Institute, vol. 36, no. 3, pp. 3969–3976, 2017.

[19]     F. De Meyer and S. Jouenne, “Industrial carbon capture by absorption: Recent advances and path forward,” Current Opinion in Chemical Engineering, vol. 38, 2022, Art. no. 100868.

[20]     K. H. Smith, H. E. Ashkanani, B. I. Morsi, and N. S. Siefert, “Physical solvents and techno-economic analysis for pre-combustion CO2 capture: A review,” International Journal of Greenhouse Gas Control, vol. 118, 2022, Art. no. 103694.

[21]     H. E. Ashkanani, R. Wang, W. Shi, N. S. Siefert, R. L. Thompson, K. Smith, J.A. Steckel, I.K. Gamwo, D. Hopkinson, K. Resnik, and B.I. Morsi, “Levelized cost of CO2 captured using five physical solvents in pre-combustion applications,” International Journal of Greenhouse Gas Control, vol. 101, 2020, Art. no. 103135.

 [22]    R. Stanger, T. Wall, R. Spörl, M. Paneru, S. Grathwohl, M. Weidmann, G. Scheffknecht, D. McDonald, K. Myöhänen, J. Ritvanen, S. Rahiala, T. Hyppänen, J. Mletzko, A. Kather, and S. Santos, “Oxyfuel combustion for CO2 capture in power plants,” International journal of greenhouse gas control, vol. 40, pp. 55–125, 2015.

[23]     R. Sanz, G. Calleja, A. Arencibia, and E. S. Sanz-Pérez, “Amino functionalized mesostructured SBA-15 silica for CO2 capture: Exploring the relation between the adsorption capacity and the distribution of amino groups by TEM,” Microporous and Mesoporous Materials, vol. 158, pp. 309–317, 2012.

[24]     A. A. Okesola, A. A. Oyedeji, A. F. Abdulhamid, J. Olowo, B. E. Ayodele, and T. W. Alabi, “Direct air capture: A review of carbon dioxide capture from the air,” IOP Conference Series: Materials Science and Engineering, vol. 413, 2018, Art. no. 012077.

[25]     A. Nandy, C. Loha, S. Gu, P. Sarkar, M. K. Karmakar, and P. K. Chatterjee, “Present status and overview of chemical looping combustion technology,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 597–619, 2016.

[26]     A. Lyngfelt, “Chemical looping combustion: Status and development challenges,” Energy & Fuels, vol. 34, no. 8, pp. 9077–9093, 2020.

[27]     L. I. Eide and D. W. Bailey, “Precombustion decarbonisation processes,” Oil & Gas Science and Technology, vol. 60, no. 3, pp. 475–484, 2005.

[28]     D. Jansen, M. Gazzani, G. Manzolini, E. van Dijk, and M. Carbo, “Pre-combustion CO2 capture,” International Journal of Greenhouse Gas Control, vol. 40, no. 1, pp. 67–187, 2015.

[29]     M. Gazzani, E. Macchi, and G. Manzolini, “CO2 capture in natural gas combined cycle with SEWGS. Part A: Thermodynamic performances,” International Journal of Greenhouse Gas Control, vol. 12, pp. 493–501, 2013.

[30]     M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J. M. Amann, and C. Bouallou, “Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture,” Applied Thermal Engineering, vol. 30, no. 1, pp. 53–62, 2010.

[31]     M. Younas, M. Sohail, L. K. Leong, M. J. Bashir, and S. Sumathi, “Feasibility of CO2 adsorption by solid adsorbents: A review on low-temperature systems,” International Journal of Environmental Science and Technology, vol. 13, pp, 1839–1860, 2016.

[32]     T. C. Merkel, H. Lin, X. Wei, and R. Baker, “Power plant post-combustion carbon dioxide capture: An opportunity for membranes,” Journal of Membrane Science, vol. 359, no. 1–2, pp. 126–139, 2010.

[33]     E. De Visser, C. Hendriks, M. Barrio, M. J. Mølnvik, G. de Koeijer, S. Liljemark, and Y. Le Gallo, “Dynamis CO2 quality recommendations,” International Journal of Greenhouse Gas Control, vol. 2, no. 4, pp. 478–484, 2008.

[34]     E. S. Rubin, J. E. Davison, and H. J. Herzog, “The cost of CO2 capture and storage,” International Journal of Greenhouse Gas Control, vol. 40, pp. 378–400, 2015.

[35]     P. Moldenhauer, C. Linderholm, M. Rydén, and A. Lyngfelt, “Avoiding CO2 capture effort and cost for negative CO2 emissions using industrial waste in chemical-looping combustion/gasification of biomass,” Mitigation and Adaptation Strategies for Global Change, vol. 25, no. 1, pp. 1–24, 2020.

[36]     S. Abuelgasim, W. Wang, and A. Abdalazeez, “A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress,” Science of the Total Environment, vol. 764, 2021, Art. no. 142892.

[37]     L.F. de Diego, A. Serrano, F. García-Labiano, E. García-Díez, A. Abad, P. Gayán, J. Andanez, “Bioethanol combustion with CO2 capture in a 1 kWth Chemical Looping Combustion prototype: Suitability of the oxygen carrier,” Chemical Engineering Journal, vol. 283, pp. 1405–1413, 2016.

[38]     E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, and C. W. Jones, “Direct capture of CO2 from ambient air,” Chemical Reviews, vol. 116, no. 19, pp. 11840–11876, 2016.

[39]     M. Fasihi, O. Efimova, and C. Breyer, “Techno-economic assessment of CO2 direct air capture plants,” Journal of Cleaner Production, vol. 224, pp. 957–980, 2019.

[40]     P. C. Psarras, S. Comello, P. Bains, P. Charoensawadpong, S. Reichelstein, and J. Wilcox, “Carbon capture and utilization in the industrial sector,” Environmental Science & Technology, vol. 51, no. 19, pp. 11440–11449, 2017.

[41]     T. Wilberforce, A. Olabi, E. T. Sayed, K. Elsaid, and M. A. Abdelkareem, “Progress in carbon capture technologies,” Science of the Total Environment, vol. 761, 2021, Art. no. 143203.

[42]     P. Gabrielli, M. Gazzani, and M. Mazzotti. “The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry,” Industrial & Engineering Chemistry Research, vol. 59, no. 15, pp. 7033–7045, 2020.

[43]     T. Hills, D. Leeson, N. Florin, and P. Fennell, “Carbon capture in the cement industry: Technologies, progress, and retrofitting,” Environmental Science & Technology, vol. 50, no. 1, pp. 368–377, pp. 2016.

[44]     L. Rosa and M. Mazzotti. “Potential for hydrogen production from sustainable biomass with carbon capture and storage,” Renewable and Sustainable Energy Reviews, vol. 157, 2022, Art. no. 112123.

[45]     M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzogj, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Truslerl, P. Webley, J. Wilcox, and N. M. Dowell, “Carbon capture and storage (CCS): The way forward,” Energy & Environmental Science, vol. 11, no. 5, pp. 1062–1176, 2018.

[46]     M. A. Nemitallah, M. A. Habib, H.M. Badr, S. A. Said, A. Jamal, R. Ben‐Mansour, E. M. Mokheimer, and K. Mezghani, “Oxy‐fuel combustion technology: Current status, applications, and trends,” International Journal of Energy Research, vol. 41, no. 12, pp. 1670–1708, 2017.

[47]     M. A. Sabri, S. Al Jitan, D. Bahamon, L. F. Vega, and G. Palmisano, “Current and future perspectives on catalytic-based integrated carbon capture and utilization,” Science of the Total Environment,  vol. 790, 2021, Art. no. 148081.

[48]     M.G. Plaza, S. Martínez, and F. Rubiera, “CO2 capture, use, and storage in the cement industry: State of the art and expectations,” Energies, vol. 13, no. 21, 2020, Art. no. 5692.

[49]     F. Kazemifar, “A review of technologies for carbon capture, sequestration, and utilization: Cost, capacity, and technology readiness,” Greenhouse Gases: Science and Technology, vol. 12, no. 1, pp. 200–230, 2022.

[50]     S. Vaz Jr, A. P. R. de Souza, and B. E. L. Baeta, “Technologies for carbon dioxide capture: A review applied to energy sectors,” Cleaner Engineering and Technology, vol. 8, 2022, Art. no. 100456.

[51]     W. Y. Hong, “A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future,” Carbon Capture Science & Technology, vol. 3, 2022, Art. no. 100044.

[52]     H. Singh, C. Li, P. Cheng, X. Wang, and Q. Liu, “A critical review of technologies, costs, and projects for production of carbon-neutral liquid e-fuels from hydrogen and captured CO2,” Energy Advances, vol. 1, no. 9, pp. 580–605, 2022.

[53]     C. Font-Palma, D. Cann, and C. Udemu, “Review of cryogenic carbon capture innovations and their potential applications,” C, vol. 7, no. 3, 2021, Art. no. 58.

[54]     J. A. Garcia, M. Villen-Guzman, J. M. Rodriguez-Maroto, and J. M. Paz-Garcia, “Technical analysis of CO2 capture pathways and technologies,” Journal of Environmental Chemical Engineering, vol. 10, no. 5, 2022, Art. no. 108470.

[55]     B. Dziejarski, R. Krzyżyńska, and K. Andersson, “Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment,” Fuel, vol. 342, 2023, Art. no. 127776.

[56]     A. H. Ruhaimi, C. N. C. Hitam, M. A. A. Aziz, N. H. A. Hamid, H. D. Setiabudi, and L. P. Teh, “The role of surface and structural functionalisation on graphene adsorbent nanomaterial for CO2 adsorption application: Recent progress and future prospects,” Renewable and Sustainable Energy Reviews, vol. 167, 2022, Art. no. 112840.

[57]     S. Li, Yuan, S. Deng, L. Zhao, and K. B. Lee, “A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice,” Renewable and Sustainable Energy Reviews, vol. 152, 2021, Art. no. 111708.

[58]     A. Zaker, S. ben Hammouda, J. Sun, X. Wang, X. Li, and Z. Chen, “Carbon-based materials for CO2 capture: Their production, modification and performance,” Journal of Environmental Chemical Engineering, vol. 11, no. 3, 2023, Art. no. 109741.

[59]     A. Allangawi, E.F. Alzaimoor, H.H. Shanaah, H.A. Mohammed, H. Saqer, A.A. El-Fattah, and A.H Kamel, “Carbon capture materials in post-combustion: Adsorption and absorption-based processes,” C, vol. 9, no. 1, 2023, Art. no. 17.

[60]     C. Dhoke, A. Zaabout, S. Cloete, and S. Amini, “Review on reactor configurations for adsorption-based CO2 capture,” Industrial & Engineering Chemistry Research, vol. 60, no. 10, pp. 3779–3798, 2021.

[61]     F. Raganati, F. Miccio, and P. Ammendola, “Adsorption of carbon dioxide for post-combustion capture: A review,” Energy & Fuels, vol. 35, no. 16, pp. 12845–12868, 2021.

[62]     T. Okumura, K. Yoshizawa, S. Nishibe, H. Iwasaki, M. Kazari, and T. Hori, “Parametric testing of a pilot-scale design for a moving-bed CO2 capture system using low-temperature steam,” Energy Procedia, vol. 114, pp. 2322–2329, 2017.

[63]     J. W. Lee, I. T. Pineda, J. H. Lee, and Y. T. Kang, “Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents,” Applied Energy, vol. 178, pp. 164–176, 2016.

[64]     W. L. Theo, J. S. Lim, H. Hashim, A. A. Mustaffa, and W. S. Ho, “Review of pre-combustion capture and ionic liquid in carbon capture and storage,” Applied Energy, vol. 183, pp. 1633–1663, 2016.

[65]     S. Ma, C. Gongda, Z. Sijie, W. Jiaqi, G. Ran, M. Lan, and C. Jin, “Experimental study of mixed additive of Ni (II) and piperazine on ammonia escape in CO2 capture using ammonia solution,” Applied Energy, vol. 169, pp. 597–606, 2016.

[66]     A. A. Khan, G. N. Halder, and A. K. Saha, “Experimental investigation of sorption characteristics of capturing carbon dioxide into piperazine activated aqueous 2-amino-2-methyl-1-propanol solution in a packed column,” International Journal of Greenhouse Gas Control, vol. 44, pp. 217–226, 2016.

[67]     F. Chu, C. Jon, L. Yang, X. Du, and Y. Yang, “CO2 absorption characteristics in ammonia solution inside the structured packed column,” Industrial & Engineering Chemistry Research, vol. 55, no.12, pp. 3696–3709, 2016.

[68]     Y.N. Wang, J. Pfotenhauer, X. Zhi, L. Qiu, and J. Li, “Transient model of carbon dioxide desublimation from nitrogen-carbon dioxide gas mixture,” International Journal of Heat and Mass Transfer, vol. 127, pp. 339–347, 2018.

[69]     IEA (International Energy Agency), CO2 Emissions in 2023. Paris: International Energy Agency, 2024.

[70]     Z. Liu, Z. Deng, S. J. Davis, and P. Ciais, “Global carbon emissions in 2023,” Nature Reviews Earth & Environment, vol. 5, no. 4, pp. 253–254, 2024.

[71]     British Petroleum. “BP Energy Outlook 2023.” bp.com. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023 (accessed Oct. 3, 2023).

[72]     CarbonBrief. “Analysis: Global CO2 emissions could peak as soon as 2023.” carbonbrief.org. https://www.carbonbrief.org/analysis-global-co2-emissions-could-peak-as-soon-as-2023-iea-data-reveals/ (accessed Oct. 26, 2023).

[73]     E. De Cian, F. Sferra, and M. Tavoni, “The influence of economic growth, population, and fossil fuel scarcity on energy investments,” Clim Change, vol. 136, pp. 39–55, 2016.

[74]     H. Ritchie, P. Rosado, and M. Roser.  “CO2 and other greenhouse gas emissions.” ourworldindata.org. https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed Oct. 10, 2023).

[75]     M. Shen, L. Tong, S. Yin, C. Liu, L. Wang, W. Feng, and Y. Ding, “Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review,” Separation and Purification Technology, vol. 299, 2022,       Art. no. 121734.

[76]     L. Baxter, A. Baxter, and S. Burt, “Cryogenic CO2 capture as a cost-effective CO2 capture process,” in International Pittsburgh Coal Conference, pp. 1–14, 2009.

[77]     I. Sreedhar, R. Vaidhiswaran, B. M. Kamani, and A. Venugopal, “Process and engineering trends in membrane-based carbon capture,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 659–684, 2017.

[78]     A. Corti, D. Fiaschi, and L. Lombardi, “Carbon dioxide removal in power generation using membrane technology,” Energy, vol. 29, no. 12–15, pp. 2025–2043, 2004.

[79]     N. Prasetya, N. F. Himma, P. D. Sutrisna, I. G. Wenten, and B. P. Ladewig, “A review on emerging organic-containing microporous material membranes for carbon capture and separation,” Chemical Engineering Journal, vol. 391, 2020, Art. no. 123575.

[80]     A. G. Olabi, A. H. Alami, M. Ayoub, H. Aljaghoub, S. Alasad, A. Inayat, M. A. Abdelkareem, K.-J. Chae, and E. T. Sayed, “Membrane-based carbon capture: Recent progress, challenges, and their role in achieving the sustainable development goals,” Chemosphere, vol. 320, 2023, Art. no. 137996.

[81]     N. Ferrari, L. Mancuso, J. Davison, P. Chiesa, E. Martelli, and M. C. Romano, “Oxy-turbine for Power Plant with CO2 capture,” Energy Procedia, vol. 114, pp. 471–480, 2017.

[82]     N. Habib, Z. Shamair, N. Tara, A.-S. Nizami, F. H. Akhtar, N. M. Ahmad, M. A. Gilani, M. R. Bilad, and A. L. Khan, “Development of highly permeable and selective mixed matrix membranes based on Pebax® 1657 and NOTT-300 for CO2 capture,” Separation and Purification Technology, vol. 234, 2020, Art. no. 116101.

[83]     Z. Zhang, S.-Y. Pan, H. Li, J. Cai, A. G. Olabi, E. J. Anthony, and V. Manovic, “Recent advances in carbon dioxide utilization,” Renewable and Sustainable Energy Reviews, vol. 125, 2020, Art. no. 109799.

[84]     M. Asif, L. Wang, R. Wang, H. Wang, and R. D. Hazlett, “Mechanisms in CO2-enhanced coalbed methane recovery process,” Advances in Geo-Energy Research, vol. 6, no. 6, pp. 531–534, 2022.

[85]     C. H. Huang and C. S. Tan, “A review: CO2 utilization,” Aerosol and Air Quality Research, vol. 14, no. 2, pp. 480–499, 2014.

[86]     A. Wang, J. Lv, J. Wang, and K. Shi, “CO2 enrichment in greenhouse production: Towards a sustainable approach,” Frontiers in Plant Science, vol. 13, 2022, Art. no. 1029901.

[87]     P. Show and M. Sriariyanun, “Prospect of lipid biphasic system in microalgae research,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 295–296, 2021.

[88]     P. R. Yaashikaa, P. S. Kumar, S. J. Varjani, and A. Saravanan, “A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products,” Journal of CO2 Utilization, vol. 33, pp. 131–147, 2019.

[89]     N.V.D. Long, J. Lee, K.-K. Koo, P. Luis, and M. Lee, “Recent progress and novel applications in enzymatic conversion of carbon dioxide,” Energies, vol. 10, no. 4, 2017, Art. no. 473.

[90]     H. Chang, X. Quan, N. Zhong, Z. Zhang, C. Lu, G. Li, Z. Cheng, and L. Yang, “High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production,” Bioresource Technology, vol. 266, pp. 374–381, 2018.

[91]     D.D.W. Tsai, R. Ramaraj and P. Honglay Chen, “Growth condition study of algae function in ecosystem for CO2 bio-fixation,” Journal of Photochemistry and Photobiology, vol. 107, pp. 27–34, 2012.

[92]     S. Miyachi, I. Iwasaki, and Y. Shiraiwa, “Historical perspective on microalgal and cyanobacterial acclimation to low-and extremely high-CO2 conditions,” Photosynthesis research, vol. 77, pp. 139–153, 2003.

[93]     B. Wang, J. Wang, W. Zhang, and D. R. Meldrum, “Application of synthetic biology in cyanobacteria and algae,” Frontiers in microbiology, vol. 3, 2012, Art. no. 344.

[94]     S. E. Shin, J. M. Lim, H. G. Koh, E. K. Kim, N. K. Kang, S. Jeon, S. Kwon, W. S. Shin, B. Lee, K. Hwangbo, J. Kim, S. H. Ye, J. Y. Yun, H. Seo, H. M. Oh, K. J. Kim, J. S. Kim, W. J. Jeong, Y. K. Chang, and B. R. Jeong, “CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii,” Scientific Reports, vol. 6, no. 1, 2016, Art. no. 27810.

[95]     Q. Wang, Y. Lu, Y. Xin, L. Wei, S. Huang, and J. Xu, “Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9,” The Plant Journal, vol. 88, no. 6, pp. 1071–1081, 2016. 

[96]     M. Sriariyanun, M. P. Gundupalli, V. Phakeenuya, T. Phusantisampan, Y. S. Cheng, and P. Venkatachalam, “Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms,” Journal of Applied Science and Engineering, vol. 27, no. 2, pp. 1985–2005, 2024. 

[97]     D.U. Malusare, D.P. Ghumra and M.D. Yadav, “Bioconversion of CO2 and potential of gas fermentation for mainstream applications: Critical advances and engineering challenges,” The Canadian Journal of Chemical Engineering, vol. 101, no. 12, pp. 6774–6791, 2023.

[98]     K. Gupta, R. Kumar, K. K. Baruah, S. Hazarika, S. Karmakar, and N. Bordoloi, “Greenhouse gas emission from rice fields: a review from Indian context,” Environmental Science and Pollution Research, vol. 28, no. 24, pp. 30551–30572, 2021.

[99]     A. S. S. Thomas, W. Pongprayoon, K. Cheenkachorn, and M. Sriariyanun, “Plant-microbe interactions-insights and views for applications in sustainable agriculture,” Applied Science and Engineering Progress, vol. 15, no. 1, 2022, Art. no. 5286, doi: 10.14416/j.asep.2021.07.008.

[100]   A. Ahmad, M. Zoli, C. Latella, and J. Bacenetti, “Rice cultivation and processing: Highlights from a life cycle thinking perspective,” Science of the Total Environment, vol. 871, 2023, Art. no. 162079.

[101]   S. Hussain, S. Peng, S. Fahad, A. Khaliq, J. Huang, K. Cui, and L. Nie, “Rice management interventions to mitigate greenhouse gas emissions: A review,” Environmental Science and Pollution Research, vol. 22, pp. 3342–3360, 2015.

[102]   N. Zexer, S. Kumar, and R. Elbaum, “Silica deposition in plants: Scaffolding the mineralization,” Annals of Botany, vol. 131, no. 6, pp. 897–908, 2023.

[103]   O. Katz, “Silicon and plant–animal interactions: Towards an evolutionary framework,” Plants, vol. 9, no. 4, 2020, Art. no. 430.

[104]   A.L. Khan, “Silicon: A valuable soil element for improving plant growth and CO2 sequestration,” Journal of Advanced Research, 2024.

[105]   R. Gao, L. Zhuo, Y. Duan, C. Yan, Z. Yue, Z. Zhao, P. Wu, “Effects of alternate wetting and drying irrigation on yield, water-saving, and emission reduction in rice fields: A global meta-analysis,” Agricultural and Forest Meteorology, vol. 353, 2024, Art. no. 110075. 

[106]   R. Wassmann, H. U. Neue, R. S. Lantin, L. V. Buendia, and H. Rennenberg, “Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries,” Nutrient Cycling in Agroecosystems, vol. 58, pp. 1–12, 2000.

[107]   Z. Song, K. McGrouther, H. Wang, “Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems,” Earth-Science Reviews, vol. 158, pp. 19–30, 2016

[108]   T. Ball, K. Chandler-Ezell, R. Dickau, N. Duncan, T. C. Hart, J. Iriarte, C. Lentfer, A. Logan, H. Lu, M. Madella, and D. M. Pearsall, “Phytoliths as a tool for investigations of agricultural origins and dispersals around the world,” Journal of Archaeological Science, vol. 68, pp. 32–45, 2016.

[109]   L. N. Hudson, T. Newbold, S. Contu, S. L. Hill, I. Lysenko, A. De Palma, H. R. Phillips, T. I. Alhusseini, F. E. Bedford, D. J. Bennett, and H. Booth, “The database of the PREDICTS (projecting responses of ecological diversity in changing terrestrial systems) project,” Ecology and evolution, vol. 7, no. 1, pp. 145-188, 2017.

[110]   W. Qadar, R. Dar, and I. Rashid “Phytolith particulate matter and its potential human and environmental effects.” Environmental Pollution, vol. 327, 2023, Art. no. 121541.

[111]   E. Alper and O. Y. Orhan, “CO2 utilization: Developments in conversion processes,” Petroleum, vol. 3, no.1, pp. 109–126, 2017.

[112]   M. Younas, L. L. Kong, M. J. Bashir, H. Nadeem, A. Shehzad, and S. Sethupathi, “Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2,” Energy & Fuels, vol. 30, no. 11, pp. 8815–8831, 2016.

[113]   Z. Lv, H. Du, S. Xu, T. Deng, J. Ruan, and C. Qin, “Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation,” Applied Energy, vol. 355, 2024, Art. no. 122242.

[114]   X. Jiang, X. Nie, X. Guo, C. Song, and J. G. Chen, “Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis,” Chemical reviews, vol. 120, no. 15, pp. 7984–8034, 2020.

[115]   J. Nyári, M. Magdeldin, M. Larmi, M. Järvinen, and A. Santasalo-Aarnio, “Techno-economic barriers of an industrial-scale methanol CCU-plant,” Journal of CO2 Utilization, vol. 39, 2020, Art. no. 101166.

[116]   M. González-Castaño, B. Dorneanu and H. Arellano-García, “The reverse water gas shift reaction: a process systems engineering perspective,” Reaction Chemistry and Engineering, vol. 6, no. 6, pp. 954–976, 2021.

[117]   A. J. Garza, A. T. Bell, and M. Head-Gordon, “Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products,” ACS catalysis, vol. 8, no. 2, pp. 1490–1499, 2018.

[118]   S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes, “Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons,” ACS nano, vol. 4, no. 3, pp. 1259–1278, 2010.

[119]   I. Omae, “Aspects of carbon dioxide utilization,” Catalysis today, vol. 115, no. 1–4, pp. 33–52, 2006.

[120]   A. Khan, A. Abbas and R. Dickson. “Towards a low-carbon future: Exploring green urea synthesis for sustainable agriculture,” Green Chemistry, vol. 26, no. 3, pp. 1551–1565, 2024.

[121]   E. Koohestanian, J. Sadeghi, D. Mohebbi-Kalhori, F. Shahraki, and A. Samimi, “A novel process for CO2 capture from the flue gases to produce urea and ammonia,” Energy, vol. 144, pp. 279–285, 2018.

[122]   F. Barzagli, F. Mani and M. Peruzzini, “From greenhouse gas to feedstock: Formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions,” Green chemistry, vol. 13, no. 5, pp. 1267–1274, 2011.

[123]   J. G. Driver, R. E. Owen, T. Makanyire, J. A. Lake, J. McGregor, and P. Styring, “Blue urea: Fertilizer with reduced environmental impact,” Frontiers in Energy Research, vol. 7, 2019, Art. no. 88.

[124]   E. Georgakopoulos, R. M. Santos, Y. W. Chiang, and V. Manovic, “Influence of process parameters on carbonation rate and conversion of steelmaking slags–Introduction of the ‘carbonation weathering rate’,” Greenhouse Gases: Science and Technology, vol. 6, no. 4, pp. 470–491, 2016. 

[125]   S. J. Gerdemann, W. K. O'Connor, D. C. Dahlin, L. R. Penner, and H. Rush, “Ex situ aqueous mineral carbonation,” Environmental Science & Technology, vol. 41, no. 7, pp. 2587–2593, 2007.

[126]   S. Y. Pan, P. C. Chiang, W. Pan, and H. Kim, “Advances in state-of-art valorization technologies for captured CO2 toward sustainable carbon cycle,” Critical Reviews in Environmental Science and Technology, vol. 48, no. 5, pp. 471–534, 2018.

[127]   M. Aresta, A. Dibenedetto, and E. Quaranta, Reaction Mechanisms in Carbon Dioxide Conversion. Heidelberg, Berlin: Springer, 2016.

[128]   H. Naims, “Economics of carbon dioxide capture and utilization—a supply and demand perspective,” Environmental Science and Pollution Research, vol. 23, pp. 22226–22241, 2016.

 [129]  S. Chen, R. Yu, A. Soomro, and W. Xiang, “Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture,” Energy, vol. 175, pp. 445–455, 2019.

[130]   A. Saravanan, D. V. N. Vo, S. Jeevanantham, V. Bhuvaneswari, V. A. Narayanan, P. R Yaashikaa, S. Swetha, and B. Reshma, “A comprehensive review on different approaches for CO2 utilization and conversion pathways,” Chemical Engineering Science, vol. 236, 2021, Art. no. 116515.

[131]   S. Chakrabortty, R. Kumar, J. Nayak, B.-H. Jeon, S. K. Dargar, S. K. Tripathy, P. Pal, G.-S. Ha, K. H. Kim, and M. Jasinski, “Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilization,” Renewable and Sustainable Energy Reviews, vol. 182, 2023, Art. no. 113417.

[132]   M. Aresta, A. Dibenedetto, and A. Angelini, “The changing paradigm in CO2 utilization,” Journal of CO2 Utilization, vol. 3, pp. 65–73, 2013.

[133]   J. Patricio, A. Angelis-Dimakis, A. Castillo-Castillo, Y. Kalmykova, and L. Rosado, “Method to identify opportunities for CCU at regional level—Matching sources and receivers,” Journal of CO2 Utilization, vol. 22, pp. 330–345, 2017.

[134]   D. Baskaran, P. Saravanan, L. Nagarajan, and H.-S. Byun, “An overview of technologies for Capturing, Storing, and utilizing carbon Dioxide: Technology Readiness, large-scale Demonstration, and cost,” Chemical Engineering Journal, 2024, Art. no. 151998.

[135]   C. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. M. Dowell, J. C. Minx, P. Smith, and C. K. Williams, “The technological and economic prospects for CO2 utilization and removal,” Nature, vol. 575, no. 7781, pp. 87–97, 2019.

Full Text: PDF

DOI: 10.14416/j.asep.2024.11.004

Refbacks

  • There are currently no refbacks.