A Comprehensive Review of Approaches in Carbon Capture, and Utilization to Reduce Greenhouse Gases
Abstract
Keywords
[1] T. Ahmad and D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973–1991, 2020.
[2] A. Kausar and I. Ahmad, “Footmarks of graphene nanocomposites towards carbon capturing—Next membrane materials,” Next Materials, vol. 5, 2024, Art. no. 100276.
[3] A. Kona, P. Bertoldi, F. Monforti-Ferrario, S. Rivas, and J. F. Dallemand, “Covenant of mayors signatories leading the way towards 1.5 degree global warming pathway,” Sustainable Cities and Society, vol. 41, pp. 568–575, 2018.
[4] Z. Wang, Z. Huang, Y. Huang, C. Wittram, Y. Zhuang, S. Wang, and B.Nie, “Synergy of carbon capture, waste heat recovery and hydrogen production for industrial decarbonisation,” Energy Conversion and Management, vol. 312, 2024, Art. no. 118568.
[5] D. Bose, R. Bhattacharya, T. Kaur, R. Pandya, A. Sarkar, A. Ray, S.Mondal, A.Mondal, P.Ghosh, and R. I. Chemudupati, “Innovative approaches for carbon capture and storage as crucial measures for emission reduction within industrial sectors,” Carbon Capture Science & Technology, vol. 12, 2024, Art. no. 100238.
[6] Energy Information Administration (US), Annual Energy Outlook 2007: With Projections To 2030. Washington, DC: Government Printing Office, 2007.
[7] M. Sriariyanun and B. Dharmalingam, “From waste to wealth: Challenges in producing value-added biochemicals from lignocellulose biorefinery,” Journal of Applied Science and Emerging Technology, vol. 22, no. 3, 2023, Art. no. e900001.
[8] Y. Wang, Y. Liu, and B. Gu, “COP26: Progress, challenges, and outlook,” Springer, vol. 39, no. 8, pp. 1209–1216, 2022.
[9] H, Dang, B. Guan, J. Chen, Z. Ma, Y. Chen, J. Zhang, Z. Guo, L. Chen, J. Hu, C. Yi, S. Yao, and Z. Huang, “Research on carbon dioxide capture materials used for carbon dioxide capture, utilization, and storage technology: A review,” Environmental Science and Pollution Research, vol. 31, pp. 33259–33302, 2024.
[10] M. Kheirinik, S. Ahmed, and N. Rahmanian, “Comparative techno-economic analysis of carbon capture processes: Pre-combustion, post-combustion, and oxy-fuel combustion operations,” Sustainability, vol. 13, no. 24, 2021, Art. no. 13567.
[11] Z. Sun, Q. Wu, C. Zhao, H. Li, and A. Zhang, “A review of NOx control by MILD-oxy combustion,” Journal of the Energy Institute, vol. 113, 2023, Art. no. 101502.
[12] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 426–443, 2014.
[13] P. Wienchol, A. Szlęk, and M. Ditaranto, “Waste-to-energy technology integrated with carbon capture–Challenges and opportunities,” Energy, vol. 198, 2020, Art. no. 117352.
[14] S. Areeya, E. J. Panakkal, M. Sriariyanun, T. Kangsadan, A. Tawai, S. Amornraksa, U. W. Hartley, and P. Yasurin, “A review on chemical pretreatment of lignocellulosic biomass for the production of bioproducts: Mechanisms, challenges and applications,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6767.
[15] S. Areeya, E. J. Panakkal, P. Kunmanee, A. Tawai, S. Amornraksa, M. Sriariyanun, Kaoloun, N. Hartini, Y. S. Cheng, M. Kchaou, S. Dasari, and M. P. Gundupalli, “A review of sugarcane biorefinery: From waste to value-added products,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7402.
[16] L. Rosa, D. L. Sanchez, and M. Mazzotti, “Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe,” Energy & Environmental Science, vol. 14, no. 5, pp. 3086–3097, 2021.
[17] R. López, C. Fernández, O. Martínez, and M. Sánchez, “Techno-economic analysis of a 15 MW corn-rape oxy-combustion power plant,” Fuel Processing Technology, vol. 142, pp. 296–304, 2016.
[18] R. Falkenstein-Smith, P. Zeng, and J. Ahn, “Investigation of oxygen transport membrane reactors for oxy-fuel combustion and carbon capture purposes,” Proceedings of the Combustion Institute, vol. 36, no. 3, pp. 3969–3976, 2017.
[19] F. De Meyer and S. Jouenne, “Industrial carbon capture by absorption: Recent advances and path forward,” Current Opinion in Chemical Engineering, vol. 38, 2022, Art. no. 100868.
[20] K. H. Smith, H. E. Ashkanani, B. I. Morsi, and N. S. Siefert, “Physical solvents and techno-economic analysis for pre-combustion CO2 capture: A review,” International Journal of Greenhouse Gas Control, vol. 118, 2022, Art. no. 103694.
[21] H. E. Ashkanani, R. Wang, W. Shi, N. S. Siefert, R. L. Thompson, K. Smith, J.A. Steckel, I.K. Gamwo, D. Hopkinson, K. Resnik, and B.I. Morsi, “Levelized cost of CO2 captured using five physical solvents in pre-combustion applications,” International Journal of Greenhouse Gas Control, vol. 101, 2020, Art. no. 103135.
[22] R. Stanger, T. Wall, R. Spörl, M. Paneru, S. Grathwohl, M. Weidmann, G. Scheffknecht, D. McDonald, K. Myöhänen, J. Ritvanen, S. Rahiala, T. Hyppänen, J. Mletzko, A. Kather, and S. Santos, “Oxyfuel combustion for CO2 capture in power plants,” International journal of greenhouse gas control, vol. 40, pp. 55–125, 2015.
[23] R. Sanz, G. Calleja, A. Arencibia, and E. S. Sanz-Pérez, “Amino functionalized mesostructured SBA-15 silica for CO2 capture: Exploring the relation between the adsorption capacity and the distribution of amino groups by TEM,” Microporous and Mesoporous Materials, vol. 158, pp. 309–317, 2012.
[24] A. A. Okesola, A. A. Oyedeji, A. F. Abdulhamid, J. Olowo, B. E. Ayodele, and T. W. Alabi, “Direct air capture: A review of carbon dioxide capture from the air,” IOP Conference Series: Materials Science and Engineering, vol. 413, 2018, Art. no. 012077.
[25] A. Nandy, C. Loha, S. Gu, P. Sarkar, M. K. Karmakar, and P. K. Chatterjee, “Present status and overview of chemical looping combustion technology,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 597–619, 2016.
[26] A. Lyngfelt, “Chemical looping combustion: Status and development challenges,” Energy & Fuels, vol. 34, no. 8, pp. 9077–9093, 2020.
[27] L. I. Eide and D. W. Bailey, “Precombustion decarbonisation processes,” Oil & Gas Science and Technology, vol. 60, no. 3, pp. 475–484, 2005.
[28] D. Jansen, M. Gazzani, G. Manzolini, E. van Dijk, and M. Carbo, “Pre-combustion CO2 capture,” International Journal of Greenhouse Gas Control, vol. 40, no. 1, pp. 67–187, 2015.
[29] M. Gazzani, E. Macchi, and G. Manzolini, “CO2 capture in natural gas combined cycle with SEWGS. Part A: Thermodynamic performances,” International Journal of Greenhouse Gas Control, vol. 12, pp. 493–501, 2013.
[30] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J. M. Amann, and C. Bouallou, “Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture,” Applied Thermal Engineering, vol. 30, no. 1, pp. 53–62, 2010.
[31] M. Younas, M. Sohail, L. K. Leong, M. J. Bashir, and S. Sumathi, “Feasibility of CO2 adsorption by solid adsorbents: A review on low-temperature systems,” International Journal of Environmental Science and Technology, vol. 13, pp, 1839–1860, 2016.
[32] T. C. Merkel, H. Lin, X. Wei, and R. Baker, “Power plant post-combustion carbon dioxide capture: An opportunity for membranes,” Journal of Membrane Science, vol. 359, no. 1–2, pp. 126–139, 2010.
[33] E. De Visser, C. Hendriks, M. Barrio, M. J. Mølnvik, G. de Koeijer, S. Liljemark, and Y. Le Gallo, “Dynamis CO2 quality recommendations,” International Journal of Greenhouse Gas Control, vol. 2, no. 4, pp. 478–484, 2008.
[34] E. S. Rubin, J. E. Davison, and H. J. Herzog, “The cost of CO2 capture and storage,” International Journal of Greenhouse Gas Control, vol. 40, pp. 378–400, 2015.
[35] P. Moldenhauer, C. Linderholm, M. Rydén, and A. Lyngfelt, “Avoiding CO2 capture effort and cost for negative CO2 emissions using industrial waste in chemical-looping combustion/gasification of biomass,” Mitigation and Adaptation Strategies for Global Change, vol. 25, no. 1, pp. 1–24, 2020.
[36] S. Abuelgasim, W. Wang, and A. Abdalazeez, “A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress,” Science of the Total Environment, vol. 764, 2021, Art. no. 142892.
[37] L.F. de Diego, A. Serrano, F. García-Labiano, E. García-Díez, A. Abad, P. Gayán, J. Andanez, “Bioethanol combustion with CO2 capture in a 1 kWth Chemical Looping Combustion prototype: Suitability of the oxygen carrier,” Chemical Engineering Journal, vol. 283, pp. 1405–1413, 2016.
[38] E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, and C. W. Jones, “Direct capture of CO2 from ambient air,” Chemical Reviews, vol. 116, no. 19, pp. 11840–11876, 2016.
[39] M. Fasihi, O. Efimova, and C. Breyer, “Techno-economic assessment of CO2 direct air capture plants,” Journal of Cleaner Production, vol. 224, pp. 957–980, 2019.
[40] P. C. Psarras, S. Comello, P. Bains, P. Charoensawadpong, S. Reichelstein, and J. Wilcox, “Carbon capture and utilization in the industrial sector,” Environmental Science & Technology, vol. 51, no. 19, pp. 11440–11449, 2017.
[41] T. Wilberforce, A. Olabi, E. T. Sayed, K. Elsaid, and M. A. Abdelkareem, “Progress in carbon capture technologies,” Science of the Total Environment, vol. 761, 2021, Art. no. 143203.
[42] P. Gabrielli, M. Gazzani, and M. Mazzotti. “The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry,” Industrial & Engineering Chemistry Research, vol. 59, no. 15, pp. 7033–7045, 2020.
[43] T. Hills, D. Leeson, N. Florin, and P. Fennell, “Carbon capture in the cement industry: Technologies, progress, and retrofitting,” Environmental Science & Technology, vol. 50, no. 1, pp. 368–377, pp. 2016.
[44] L. Rosa and M. Mazzotti. “Potential for hydrogen production from sustainable biomass with carbon capture and storage,” Renewable and Sustainable Energy Reviews, vol. 157, 2022, Art. no. 112123.
[45] M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzogj, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Truslerl, P. Webley, J. Wilcox, and N. M. Dowell, “Carbon capture and storage (CCS): The way forward,” Energy & Environmental Science, vol. 11, no. 5, pp. 1062–1176, 2018.
[46] M. A. Nemitallah, M. A. Habib, H.M. Badr, S. A. Said, A. Jamal, R. Ben‐Mansour, E. M. Mokheimer, and K. Mezghani, “Oxy‐fuel combustion technology: Current status, applications, and trends,” International Journal of Energy Research, vol. 41, no. 12, pp. 1670–1708, 2017.
[47] M. A. Sabri, S. Al Jitan, D. Bahamon, L. F. Vega, and G. Palmisano, “Current and future perspectives on catalytic-based integrated carbon capture and utilization,” Science of the Total Environment, vol. 790, 2021, Art. no. 148081.
[48] M.G. Plaza, S. Martínez, and F. Rubiera, “CO2 capture, use, and storage in the cement industry: State of the art and expectations,” Energies, vol. 13, no. 21, 2020, Art. no. 5692.
[49] F. Kazemifar, “A review of technologies for carbon capture, sequestration, and utilization: Cost, capacity, and technology readiness,” Greenhouse Gases: Science and Technology, vol. 12, no. 1, pp. 200–230, 2022.
[50] S. Vaz Jr, A. P. R. de Souza, and B. E. L. Baeta, “Technologies for carbon dioxide capture: A review applied to energy sectors,” Cleaner Engineering and Technology, vol. 8, 2022, Art. no. 100456.
[51] W. Y. Hong, “A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future,” Carbon Capture Science & Technology, vol. 3, 2022, Art. no. 100044.
[52] H. Singh, C. Li, P. Cheng, X. Wang, and Q. Liu, “A critical review of technologies, costs, and projects for production of carbon-neutral liquid e-fuels from hydrogen and captured CO2,” Energy Advances, vol. 1, no. 9, pp. 580–605, 2022.
[53] C. Font-Palma, D. Cann, and C. Udemu, “Review of cryogenic carbon capture innovations and their potential applications,” C, vol. 7, no. 3, 2021, Art. no. 58.
[54] J. A. Garcia, M. Villen-Guzman, J. M. Rodriguez-Maroto, and J. M. Paz-Garcia, “Technical analysis of CO2 capture pathways and technologies,” Journal of Environmental Chemical Engineering, vol. 10, no. 5, 2022, Art. no. 108470.
[55] B. Dziejarski, R. Krzyżyńska, and K. Andersson, “Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment,” Fuel, vol. 342, 2023, Art. no. 127776.
[56] A. H. Ruhaimi, C. N. C. Hitam, M. A. A. Aziz, N. H. A. Hamid, H. D. Setiabudi, and L. P. Teh, “The role of surface and structural functionalisation on graphene adsorbent nanomaterial for CO2 adsorption application: Recent progress and future prospects,” Renewable and Sustainable Energy Reviews, vol. 167, 2022, Art. no. 112840.
[57] S. Li, Yuan, S. Deng, L. Zhao, and K. B. Lee, “A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice,” Renewable and Sustainable Energy Reviews, vol. 152, 2021, Art. no. 111708.
[58] A. Zaker, S. ben Hammouda, J. Sun, X. Wang, X. Li, and Z. Chen, “Carbon-based materials for CO2 capture: Their production, modification and performance,” Journal of Environmental Chemical Engineering, vol. 11, no. 3, 2023, Art. no. 109741.
[59] A. Allangawi, E.F. Alzaimoor, H.H. Shanaah, H.A. Mohammed, H. Saqer, A.A. El-Fattah, and A.H Kamel, “Carbon capture materials in post-combustion: Adsorption and absorption-based processes,” C, vol. 9, no. 1, 2023, Art. no. 17.
[60] C. Dhoke, A. Zaabout, S. Cloete, and S. Amini, “Review on reactor configurations for adsorption-based CO2 capture,” Industrial & Engineering Chemistry Research, vol. 60, no. 10, pp. 3779–3798, 2021.
[61] F. Raganati, F. Miccio, and P. Ammendola, “Adsorption of carbon dioxide for post-combustion capture: A review,” Energy & Fuels, vol. 35, no. 16, pp. 12845–12868, 2021.
[62] T. Okumura, K. Yoshizawa, S. Nishibe, H. Iwasaki, M. Kazari, and T. Hori, “Parametric testing of a pilot-scale design for a moving-bed CO2 capture system using low-temperature steam,” Energy Procedia, vol. 114, pp. 2322–2329, 2017.
[63] J. W. Lee, I. T. Pineda, J. H. Lee, and Y. T. Kang, “Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents,” Applied Energy, vol. 178, pp. 164–176, 2016.
[64] W. L. Theo, J. S. Lim, H. Hashim, A. A. Mustaffa, and W. S. Ho, “Review of pre-combustion capture and ionic liquid in carbon capture and storage,” Applied Energy, vol. 183, pp. 1633–1663, 2016.
[65] S. Ma, C. Gongda, Z. Sijie, W. Jiaqi, G. Ran, M. Lan, and C. Jin, “Experimental study of mixed additive of Ni (II) and piperazine on ammonia escape in CO2 capture using ammonia solution,” Applied Energy, vol. 169, pp. 597–606, 2016.
[66] A. A. Khan, G. N. Halder, and A. K. Saha, “Experimental investigation of sorption characteristics of capturing carbon dioxide into piperazine activated aqueous 2-amino-2-methyl-1-propanol solution in a packed column,” International Journal of Greenhouse Gas Control, vol. 44, pp. 217–226, 2016.
[67] F. Chu, C. Jon, L. Yang, X. Du, and Y. Yang, “CO2 absorption characteristics in ammonia solution inside the structured packed column,” Industrial & Engineering Chemistry Research, vol. 55, no.12, pp. 3696–3709, 2016.
[68] Y.N. Wang, J. Pfotenhauer, X. Zhi, L. Qiu, and J. Li, “Transient model of carbon dioxide desublimation from nitrogen-carbon dioxide gas mixture,” International Journal of Heat and Mass Transfer, vol. 127, pp. 339–347, 2018.
[69] IEA (International Energy Agency), CO2 Emissions in 2023. Paris: International Energy Agency, 2024.
[70] Z. Liu, Z. Deng, S. J. Davis, and P. Ciais, “Global carbon emissions in 2023,” Nature Reviews Earth & Environment, vol. 5, no. 4, pp. 253–254, 2024.
[71] British Petroleum. “BP Energy Outlook 2023.” bp.com. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023 (accessed Oct. 3, 2023).
[72] CarbonBrief. “Analysis: Global CO2 emissions could peak as soon as 2023.” carbonbrief.org. https://www.carbonbrief.org/analysis-global-co2-emissions-could-peak-as-soon-as-2023-iea-data-reveals/ (accessed Oct. 26, 2023).
[73] E. De Cian, F. Sferra, and M. Tavoni, “The influence of economic growth, population, and fossil fuel scarcity on energy investments,” Clim Change, vol. 136, pp. 39–55, 2016.
[74] H. Ritchie, P. Rosado, and M. Roser. “CO2 and other greenhouse gas emissions.” ourworldindata.org. https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed Oct. 10, 2023).
[75] M. Shen, L. Tong, S. Yin, C. Liu, L. Wang, W. Feng, and Y. Ding, “Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review,” Separation and Purification Technology, vol. 299, 2022, Art. no. 121734.
[76] L. Baxter, A. Baxter, and S. Burt, “Cryogenic CO2 capture as a cost-effective CO2 capture process,” in International Pittsburgh Coal Conference, pp. 1–14, 2009.
[77] I. Sreedhar, R. Vaidhiswaran, B. M. Kamani, and A. Venugopal, “Process and engineering trends in membrane-based carbon capture,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 659–684, 2017.
[78] A. Corti, D. Fiaschi, and L. Lombardi, “Carbon dioxide removal in power generation using membrane technology,” Energy, vol. 29, no. 12–15, pp. 2025–2043, 2004.
[79] N. Prasetya, N. F. Himma, P. D. Sutrisna, I. G. Wenten, and B. P. Ladewig, “A review on emerging organic-containing microporous material membranes for carbon capture and separation,” Chemical Engineering Journal, vol. 391, 2020, Art. no. 123575.
[80] A. G. Olabi, A. H. Alami, M. Ayoub, H. Aljaghoub, S. Alasad, A. Inayat, M. A. Abdelkareem, K.-J. Chae, and E. T. Sayed, “Membrane-based carbon capture: Recent progress, challenges, and their role in achieving the sustainable development goals,” Chemosphere, vol. 320, 2023, Art. no. 137996.
[81] N. Ferrari, L. Mancuso, J. Davison, P. Chiesa, E. Martelli, and M. C. Romano, “Oxy-turbine for Power Plant with CO2 capture,” Energy Procedia, vol. 114, pp. 471–480, 2017.
[82] N. Habib, Z. Shamair, N. Tara, A.-S. Nizami, F. H. Akhtar, N. M. Ahmad, M. A. Gilani, M. R. Bilad, and A. L. Khan, “Development of highly permeable and selective mixed matrix membranes based on Pebax® 1657 and NOTT-300 for CO2 capture,” Separation and Purification Technology, vol. 234, 2020, Art. no. 116101.
[83] Z. Zhang, S.-Y. Pan, H. Li, J. Cai, A. G. Olabi, E. J. Anthony, and V. Manovic, “Recent advances in carbon dioxide utilization,” Renewable and Sustainable Energy Reviews, vol. 125, 2020, Art. no. 109799.
[84] M. Asif, L. Wang, R. Wang, H. Wang, and R. D. Hazlett, “Mechanisms in CO2-enhanced coalbed methane recovery process,” Advances in Geo-Energy Research, vol. 6, no. 6, pp. 531–534, 2022.
[85] C. H. Huang and C. S. Tan, “A review: CO2 utilization,” Aerosol and Air Quality Research, vol. 14, no. 2, pp. 480–499, 2014.
[86] A. Wang, J. Lv, J. Wang, and K. Shi, “CO2 enrichment in greenhouse production: Towards a sustainable approach,” Frontiers in Plant Science, vol. 13, 2022, Art. no. 1029901.
[87] P. Show and M. Sriariyanun, “Prospect of lipid biphasic system in microalgae research,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 295–296, 2021.
[88] P. R. Yaashikaa, P. S. Kumar, S. J. Varjani, and A. Saravanan, “A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products,” Journal of CO2 Utilization, vol. 33, pp. 131–147, 2019.
[89] N.V.D. Long, J. Lee, K.-K. Koo, P. Luis, and M. Lee, “Recent progress and novel applications in enzymatic conversion of carbon dioxide,” Energies, vol. 10, no. 4, 2017, Art. no. 473.
[90] H. Chang, X. Quan, N. Zhong, Z. Zhang, C. Lu, G. Li, Z. Cheng, and L. Yang, “High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production,” Bioresource Technology, vol. 266, pp. 374–381, 2018.
[91] D.D.W. Tsai, R. Ramaraj and P. Honglay Chen, “Growth condition study of algae function in ecosystem for CO2 bio-fixation,” Journal of Photochemistry and Photobiology, vol. 107, pp. 27–34, 2012.
[92] S. Miyachi, I. Iwasaki, and Y. Shiraiwa, “Historical perspective on microalgal and cyanobacterial acclimation to low-and extremely high-CO2 conditions,” Photosynthesis research, vol. 77, pp. 139–153, 2003.
[93] B. Wang, J. Wang, W. Zhang, and D. R. Meldrum, “Application of synthetic biology in cyanobacteria and algae,” Frontiers in microbiology, vol. 3, 2012, Art. no. 344.
[94] S. E. Shin, J. M. Lim, H. G. Koh, E. K. Kim, N. K. Kang, S. Jeon, S. Kwon, W. S. Shin, B. Lee, K. Hwangbo, J. Kim, S. H. Ye, J. Y. Yun, H. Seo, H. M. Oh, K. J. Kim, J. S. Kim, W. J. Jeong, Y. K. Chang, and B. R. Jeong, “CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii,” Scientific Reports, vol. 6, no. 1, 2016, Art. no. 27810.
[95] Q. Wang, Y. Lu, Y. Xin, L. Wei, S. Huang, and J. Xu, “Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9,” The Plant Journal, vol. 88, no. 6, pp. 1071–1081, 2016.
[96] M. Sriariyanun, M. P. Gundupalli, V. Phakeenuya, T. Phusantisampan, Y. S. Cheng, and P. Venkatachalam, “Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms,” Journal of Applied Science and Engineering, vol. 27, no. 2, pp. 1985–2005, 2024.
[97] D.U. Malusare, D.P. Ghumra and M.D. Yadav, “Bioconversion of CO2 and potential of gas fermentation for mainstream applications: Critical advances and engineering challenges,” The Canadian Journal of Chemical Engineering, vol. 101, no. 12, pp. 6774–6791, 2023.
[98] K. Gupta, R. Kumar, K. K. Baruah, S. Hazarika, S. Karmakar, and N. Bordoloi, “Greenhouse gas emission from rice fields: a review from Indian context,” Environmental Science and Pollution Research, vol. 28, no. 24, pp. 30551–30572, 2021.
[99] A. S. S. Thomas, W. Pongprayoon, K. Cheenkachorn, and M. Sriariyanun, “Plant-microbe interactions-insights and views for applications in sustainable agriculture,” Applied Science and Engineering Progress, vol. 15, no. 1, 2022, Art. no. 5286, doi: 10.14416/j.asep.2021.07.008.
[100] A. Ahmad, M. Zoli, C. Latella, and J. Bacenetti, “Rice cultivation and processing: Highlights from a life cycle thinking perspective,” Science of the Total Environment, vol. 871, 2023, Art. no. 162079.
[101] S. Hussain, S. Peng, S. Fahad, A. Khaliq, J. Huang, K. Cui, and L. Nie, “Rice management interventions to mitigate greenhouse gas emissions: A review,” Environmental Science and Pollution Research, vol. 22, pp. 3342–3360, 2015.
[102] N. Zexer, S. Kumar, and R. Elbaum, “Silica deposition in plants: Scaffolding the mineralization,” Annals of Botany, vol. 131, no. 6, pp. 897–908, 2023.
[103] O. Katz, “Silicon and plant–animal interactions: Towards an evolutionary framework,” Plants, vol. 9, no. 4, 2020, Art. no. 430.
[104] A.L. Khan, “Silicon: A valuable soil element for improving plant growth and CO2 sequestration,” Journal of Advanced Research, 2024.
[105] R. Gao, L. Zhuo, Y. Duan, C. Yan, Z. Yue, Z. Zhao, P. Wu, “Effects of alternate wetting and drying irrigation on yield, water-saving, and emission reduction in rice fields: A global meta-analysis,” Agricultural and Forest Meteorology, vol. 353, 2024, Art. no. 110075.
[106] R. Wassmann, H. U. Neue, R. S. Lantin, L. V. Buendia, and H. Rennenberg, “Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries,” Nutrient Cycling in Agroecosystems, vol. 58, pp. 1–12, 2000.
[107] Z. Song, K. McGrouther, H. Wang, “Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems,” Earth-Science Reviews, vol. 158, pp. 19–30, 2016
[108] T. Ball, K. Chandler-Ezell, R. Dickau, N. Duncan, T. C. Hart, J. Iriarte, C. Lentfer, A. Logan, H. Lu, M. Madella, and D. M. Pearsall, “Phytoliths as a tool for investigations of agricultural origins and dispersals around the world,” Journal of Archaeological Science, vol. 68, pp. 32–45, 2016.
[109] L. N. Hudson, T. Newbold, S. Contu, S. L. Hill, I. Lysenko, A. De Palma, H. R. Phillips, T. I. Alhusseini, F. E. Bedford, D. J. Bennett, and H. Booth, “The database of the PREDICTS (projecting responses of ecological diversity in changing terrestrial systems) project,” Ecology and evolution, vol. 7, no. 1, pp. 145-188, 2017.
[110] W. Qadar, R. Dar, and I. Rashid “Phytolith particulate matter and its potential human and environmental effects.” Environmental Pollution, vol. 327, 2023, Art. no. 121541.
[111] E. Alper and O. Y. Orhan, “CO2 utilization: Developments in conversion processes,” Petroleum, vol. 3, no.1, pp. 109–126, 2017.
[112] M. Younas, L. L. Kong, M. J. Bashir, H. Nadeem, A. Shehzad, and S. Sethupathi, “Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2,” Energy & Fuels, vol. 30, no. 11, pp. 8815–8831, 2016.
[113] Z. Lv, H. Du, S. Xu, T. Deng, J. Ruan, and C. Qin, “Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation,” Applied Energy, vol. 355, 2024, Art. no. 122242.
[114] X. Jiang, X. Nie, X. Guo, C. Song, and J. G. Chen, “Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis,” Chemical reviews, vol. 120, no. 15, pp. 7984–8034, 2020.
[115] J. Nyári, M. Magdeldin, M. Larmi, M. Järvinen, and A. Santasalo-Aarnio, “Techno-economic barriers of an industrial-scale methanol CCU-plant,” Journal of CO2 Utilization, vol. 39, 2020, Art. no. 101166.
[116] M. González-Castaño, B. Dorneanu and H. Arellano-García, “The reverse water gas shift reaction: a process systems engineering perspective,” Reaction Chemistry and Engineering, vol. 6, no. 6, pp. 954–976, 2021.
[117] A. J. Garza, A. T. Bell, and M. Head-Gordon, “Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products,” ACS catalysis, vol. 8, no. 2, pp. 1490–1499, 2018.
[118] S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes, “Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons,” ACS nano, vol. 4, no. 3, pp. 1259–1278, 2010.
[119] I. Omae, “Aspects of carbon dioxide utilization,” Catalysis today, vol. 115, no. 1–4, pp. 33–52, 2006.
[120] A. Khan, A. Abbas and R. Dickson. “Towards a low-carbon future: Exploring green urea synthesis for sustainable agriculture,” Green Chemistry, vol. 26, no. 3, pp. 1551–1565, 2024.
[121] E. Koohestanian, J. Sadeghi, D. Mohebbi-Kalhori, F. Shahraki, and A. Samimi, “A novel process for CO2 capture from the flue gases to produce urea and ammonia,” Energy, vol. 144, pp. 279–285, 2018.
[122] F. Barzagli, F. Mani and M. Peruzzini, “From greenhouse gas to feedstock: Formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions,” Green chemistry, vol. 13, no. 5, pp. 1267–1274, 2011.
[123] J. G. Driver, R. E. Owen, T. Makanyire, J. A. Lake, J. McGregor, and P. Styring, “Blue urea: Fertilizer with reduced environmental impact,” Frontiers in Energy Research, vol. 7, 2019, Art. no. 88.
[124] E. Georgakopoulos, R. M. Santos, Y. W. Chiang, and V. Manovic, “Influence of process parameters on carbonation rate and conversion of steelmaking slags–Introduction of the ‘carbonation weathering rate’,” Greenhouse Gases: Science and Technology, vol. 6, no. 4, pp. 470–491, 2016.
[125] S. J. Gerdemann, W. K. O'Connor, D. C. Dahlin, L. R. Penner, and H. Rush, “Ex situ aqueous mineral carbonation,” Environmental Science & Technology, vol. 41, no. 7, pp. 2587–2593, 2007.
[126] S. Y. Pan, P. C. Chiang, W. Pan, and H. Kim, “Advances in state-of-art valorization technologies for captured CO2 toward sustainable carbon cycle,” Critical Reviews in Environmental Science and Technology, vol. 48, no. 5, pp. 471–534, 2018.
[127] M. Aresta, A. Dibenedetto, and E. Quaranta, Reaction Mechanisms in Carbon Dioxide Conversion. Heidelberg, Berlin: Springer, 2016.
[128] H. Naims, “Economics of carbon dioxide capture and utilization—a supply and demand perspective,” Environmental Science and Pollution Research, vol. 23, pp. 22226–22241, 2016.
[129] S. Chen, R. Yu, A. Soomro, and W. Xiang, “Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture,” Energy, vol. 175, pp. 445–455, 2019.
[130] A. Saravanan, D. V. N. Vo, S. Jeevanantham, V. Bhuvaneswari, V. A. Narayanan, P. R Yaashikaa, S. Swetha, and B. Reshma, “A comprehensive review on different approaches for CO2 utilization and conversion pathways,” Chemical Engineering Science, vol. 236, 2021, Art. no. 116515.
[131] S. Chakrabortty, R. Kumar, J. Nayak, B.-H. Jeon, S. K. Dargar, S. K. Tripathy, P. Pal, G.-S. Ha, K. H. Kim, and M. Jasinski, “Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilization,” Renewable and Sustainable Energy Reviews, vol. 182, 2023, Art. no. 113417.
[132] M. Aresta, A. Dibenedetto, and A. Angelini, “The changing paradigm in CO2 utilization,” Journal of CO2 Utilization, vol. 3, pp. 65–73, 2013.
[133] J. Patricio, A. Angelis-Dimakis, A. Castillo-Castillo, Y. Kalmykova, and L. Rosado, “Method to identify opportunities for CCU at regional level—Matching sources and receivers,” Journal of CO2 Utilization, vol. 22, pp. 330–345, 2017.
[134] D. Baskaran, P. Saravanan, L. Nagarajan, and H.-S. Byun, “An overview of technologies for Capturing, Storing, and utilizing carbon Dioxide: Technology Readiness, large-scale Demonstration, and cost,” Chemical Engineering Journal, 2024, Art. no. 151998.
[135] C. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. M. Dowell, J. C. Minx, P. Smith, and C. K. Williams, “The technological and economic prospects for CO2 utilization and removal,” Nature, vol. 575, no. 7781, pp. 87–97, 2019.DOI: 10.14416/j.asep.2024.11.004
Refbacks
- There are currently no refbacks.