Low Temperature Sintering Al-B Doped-LLZO for All-Solid-State Lithium Battery
Abstract
Keywords
[1] K. B. Dermenci, A. F. Buluç, and S. Turan, “The effect of limonite addition on the performance of Li7La3Zr2O12,” Ceramics International, vol. 45, no. 17, pp. 21401–21408, 2019, doi: 10.1016/ j.ceramint.2019.07.128.
[2] Z. Cao, X. Cao, X. Liu, W. He, Y. Gao, and J. Liu, “Effect of Sb-Ba codoping on the ionic conductivity,” Ceramics International, vol. 41, no. 5, pp. 6232–6236, 2015, doi: 10.1016/j. ceramint.2015.01.030.
[3] L. Bai, W. Xue, Y. Li, X. Liu, Y. Li, and J. Sun, “The interfacial behaviours of all-solid-state lithium ion batteries,” Ceramics International, vol. 44, no. 7, pp. 7319–7328, 2018, doi: 10.1016/j.ceramint.2018.01.190.
[4] C. Fang, X. Wang, and Y. S. Meng, “Key issues hindering a practical lithium-metal anode,” Trends in Chemistry, vol. 1, no. 2, pp. 152–158, 2019, doi: 10.1016/j.trechm.2019.02.015.
[5] T. Wang, R. Zhang, Y. Wu, G. Zhu, C. Hu, J. Wen, and W. Luo, “Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries,” Journal of Energy Chemistry, vol. 46, pp. 187–190, 2020, doi: 10.1016/j.jechem.2019.10.010.
[6] R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao, C. Yan, and J.-Q. Huang, “Artificial soft-rigid protective layer for dendrite-free lithium metal anode,” Advanced Functional Materials, vol. 28, no. 8, 2018, Art. no. 1705838, doi: 10.1002/adfm.201705838.
[7] K. V. Kravchyk, D. T. Karabay, and M. V. Kovalenko, “On the feasibility of all-solid-state batteries with LLZO as a single electrolyte,” Scientific Reports, vol. 12, no. 1, pp. 1–10, 2022, doi: 10.1038/s41598-022-05141-x.
[8] J. Shen, S. Liu, D. Bian, Z. Chen, H. Pan, C. Yang, W. Tian, Y. Li, L. Kong, H. Quan, D.-W. Wang, and S. Zhu, “Efficient nanoarchitectonics of solid-electrolyte-interface for high-performance all-solid-state lithium metal batteries via mild fluorination on polyethylene oxide,” Electrochimica Acta, vol. 456, 2023, Art. no. 142482, doi: 10.1016/j.electacta.2023.142482.
[9] T. Ye, L. Li, and Y. Zhang, “Recent progress in solid electrolytes for energy storage devices,” Advanced Functional Materials, vol. 30, no. 29, 2020, Art. no. 2000077, doi: 10.1002/adfm. 202000077.
[10] J.-G. Zhang, W. Xu, J. Xiao, X. Cao, and J. Liu, “Lithium metal anodes with nonaqueous electrolytes,” Chemical Reviews, vol. 120, no. 24, pp. 13312–13348, 2020, doi: 10.1021/acs.chemrev. 0c00275.
[11] A. Neveu, V. Pelé, C. Jordy, and V. Pralong, “Exploration of Li–P–S–O composition for solid-state electrolyte materials discovery,” Journal of Power Sources, vol. 467, pp. 2–8, 2020, doi: 10.1016/j.jpowsour.2020.228250.
[12] J. Lu, Y. Li, and Y. Ding, “Structure, stability, and ionic conductivity of perovskite Li2x-ySr1-x-yLayTiO3 solid electrolytes,” Ceramics International, vol. 46, no. 6, pp. 7741–7747, 2020, doi: 10.1016/j.ceramint.2019.11.277.
[13] S. Narayanan, S. Reid, S. Butler, and V. Thangadurai, “Sintering temperature, excess sodium, and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12,” Solid State Ionics, vol. 331, pp. 22–29, 2019, doi: 10.1016/j.ssi. 2018.12.003.
[14] L. Shen, L. Wang, Z. Wang, C. Jin, L. Peng, X. Pan, J. Sun, and R. Yang, “Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte,” Solid State Ionics, vol. 339, 2019, Art. no. 114992, doi: 10.1016/j.ssi.2019.05.027.
[15] I. M. Hung and D. Mohanty, “Preparation and characterization of LLZO-LATP composite solid electrolyte for solid-state lithium-ion battery,” Solid State Communications, vol. 364, no. 135, 2023, Art. no. 115135, doi: 10.1016/j.ssc.2023. 115135.
[16] S. Kobi and A. Mukhopadhyay, “Structural (in)stability and spontaneous cracking of Li-La-zirconate cubic garnet upon exposure to ambient atmosphere,” Journal of the European Ceramic Society, vol. 38, no. 14, pp. 4707–4718, 2018, doi: 10.1016/j.jeurceramsoc.2018.06.014.
[17] E. A. Il’ina, A. A. Raskovalov, and A. P. Safronov, “The standard enthalpy of formation of superionic solid electrolyte Li7La3Zr2O12,” Thermochimica Acta, vol. 657, pp. 26–30, 2017, doi: 10.1016/j.tca.2017.09.019.
[18] R. H. Brugge, J. A. Kilner, and A. Aguadero, “Germanium as a donor dopant in garnet electrolytes,” Solid State Ionics, vol. 337, pp. 154–160, 2019, doi: 10.1016/j.ssi.2019.04.021.
[19] J. Su, X. Huang, Z. Song, T. Xiu, M. E. Badding, J. Jin, and Z. Wen, “Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal,” Ceramics International, vol. 45, no. 12, pp. 14991–14996, 2019, doi: 10.1016/j.ceramint. 2019.04.236.
[20] X. Wang, J. Liu, R. Yin, Y. Xu, Y. Cui, L. Zhao, and X. Yu, “High lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2-xSmxO12 (x = 0–0.1) ceramics,” Materials Letters, vol. 231, pp. 43–46, 2018, doi: 10.1016/j.matlet. 2018.08.006.
[21] Y. Gong, Z. G. Liu, Y. J. Jin, J. H. Ouyang, L. Chen, and Y. J. Wang, “Effect of sintering process on the microstructure and ionic conductivity of Li7–xLa3Zr2–xTaxO12 ceramics,” Ceramics International, vol. 45, no. 15, pp. 18439–18444, 2019, doi: 10.1016/j.ceramint. 2019.06.061.
[22] G. Kalita, T. Endo, and T. Nishi, “Recent development on low temperature synthesis of cubic-phase LLZO electrolyte particles for application in all-solid-state batteries,” Journal of Alloys and Compounds, vol. 969, 2023, Art. no. 172282, doi: 10.1016/j.jallcom.2023.172282.
[23] P. Zhao, G. Cao, Z. Jin, H. Ming, Y. Wen, Y. Xu, X. Zhu, Y. Xiang, and S. Zhang, “Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12,” Materials and Design, vol. 139, pp. 65–71, 2018, doi: 10.1016/j.matdes.2017.10.067.
[24] J. Li, Z. Liu, W. Ma, H. Dong, K. Zhang, and R. Wang, “Low-temperature synthesis of cubic phase Li7La3Zr2O12 via sol-gel and ball milling induced phase transition,” Journal of Power Sources, vol. 412, pp. 189–196, 2019, doi: 10.1016/j.jpowsour.2018.11.040.
[25] Z. Hu, H. Liu, H. Ruan, R. Hu, Y. Su, and L. Zhang, “High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction,” Ceramics International, vol. 42, no. 10, pp. 12156–12160, 2016, doi: 10.1016/ j.ceramint.2016.04.149.
[26] Y. Tang, Z. Luo, T. Liu, P. Liu, Z. Li, and A. Lu, “Effects of B2O3 on microstructure and ionic conductivity of Li6.5La3Zr1.5Nb0.5O12 solid electrolyte,” Ceramics International, vol. 43, no. 15, pp. 11879–11884, 2017, doi: 10.1016/j.ceramint. 2017.06.035.
[27] J. Adjah, K. I. Orisekeh, R. A. Ahmed, M. Vandadi, B. Agyei-Tuffour, D. Dodoo-Arhin, E. Nyankson, J. Asare, N. Rahbar, and W. O. Soboyejo, “Cyclic-induced deformation and the degradation of Al-doped LLZO electrolytes in all-solid-state Li-metal batteries,” Journal of Power Sources, vol. 594, 2024, doi: 10.1016/j.jpowsour.2023.234022.
[28] D. Uzun, “Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium ion battery,” Solid State Ionics, vol. 281, pp. 73–81, 2015, doi: 10.1016/j.ssi.2015.09.008.
[29] I. S. Alaih, K. D. Nugrahaningtyas, F. Rahmawati, M. F. Armaka, H. Haeruddin, and H. Nilasari, “Crystal structure and morphology of B-Al doped-lithium lantanum zirconate,” AIP Conference Proceedings, vol. 2391, 2022, doi: 10.1063/5.0072447.
[30] F. Rahmawati, S. Wahyuningsih, and D. Irianti, “The photocatalytic activity of SiO2-TiO2/graphite and its composite with silver and silver oxide,” Bulletin of Chemical Reaction Engineering and Catalysis, vol. 9, no. 1, pp. 45–52, 2014, doi: 10.9767/bcrec.9.1.5374.45-52.
[31] E. G. Temam, A. Elkhanssa, H. B. Temam, F. Kermiche, and H. Bentrah, “The influence of arabic gum on the catalytic properties of Ni-Mo alloy coatings to intensify hydrogen evolution reaction,” Anti-Corrosion Methods and Materials, vol. 64, no. 6, pp. 580–587, 2017, doi: 10.1108/ACMM-10-2016-1722.
[32] E. Guettaf Temam, F. Djani, S. Rahmane, H. Ben Temam, and B. Gasmi, “Photocatalytic activity of Al/Ni doped TiO2 films synthesized by sol-gel method: Dependence on thickness and crystal growth of photocatalysts,” Surfaces and Interfaces, vol. 31, 2022, Art. no. 102077, doi: 10.1016/j.surfin.2022.102077.
[33] L. Lemya, B. T. Hachemi, and G. T. Elhachmi, “Surface and electrochemical properties of electrodeposited Ni-WC nanocomposites coatings,” Main Group Chemistry, vol. 64, no. 6, pp. 763–772, 2017.
[34] P. Martín, M. L. López, C. Pico, and M. L. Veiga, “Li(4-x)/3Ti(5-2x)/3CrxO4 (0 ≤ x ≤ 0.9) spinels: New negatives for lithium batteries,” Solid State Sciences, vol. 9, no. 6, pp. 521–526, 2007, doi: 10.1016/j.solidstatesciences.2007.03.023.
[35] F. Rahmawati, N. Zuhrini, K. D. Nugrahaningtyas, and S. K. Arifah, “Yttria-stabilized zirconia (YSZ) film produced from an aqueous nano-YSZ slurry: Preparation and characterization,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4425–4434, 2019, doi: 10.1016/ j.jmrt.2019.07.054.
[36] M. R. Bonilla, F. A. García Daza, J. Carrasco, and E. Akhmatskaya, “Exploring Li-ion conductivity in cubic, tetragonal and mixed-phase Al-substituted Li7La3Zr2O12 using atomistic simulations and effective medium theory,” Acta Materialia, vol. 175, pp. 426–435, 2019, doi: 10.1016/j.actamat.2019.06.033.
[37] D. S. Aleksandrov, A. A. Popovich, W. Qingsheng, and P. A. Novikov, “Synthesis of tetragonal solid-state electrolyte Li7La3Zr2O12,” Materials Today: Proceedings, vol. 30, pp. 587–591, 2019, doi: 10.1016/j.matpr.2020.01.142.
[38] J. K. Padarti, T. T. Jupalli, C. Hirayama, M. Senna, T. Kawaguchi, N. Sakamoto, N. Wakiya, and H. Suzuki, “Low-temperature processing of Garnet-type ion conductive cubic Li7La3Zr2O12 powders for high performance all solid-type Li-ion batteries,” Journal of the Taiwan Institute of Chemical Engineers, vol. 90, 2018, doi: 10.1016/ j.jtice.2018.02.021.
[39] A. Moradabadi and P. Kaghazchi, “Effect of lattice and dopant–induced strain on the conductivity of solid electrolytes: application of the elastic dipole method,” Materialia, vol. 9, 2020, Art. no. 100607, doi: 10.1016/j.mtla.2020. 100607.
[40] D. Rettenwander, A. Welzl, L. Cheng, J. Fleig, M. Musso, E. Suard, M. M. Doeff, G. J. Redhammer, and G. Amthauer, “Synthesis, crystal chemistry, and electrochemical properties of Li 7–2 x La 3 Zr 2– x Mo x O 12 ( x = 0.1–0.4): Stabilization of the cubic garnet polymorph via substitution of Zr 4+ by Mo 6+,” Inorganic Chemistry, vol. 54, no. 21, pp. 10440–10449, 2015, doi: 10.1021/acs.inorgchem.5b01895.
[41] Y. Meesala, Y. K. Liao, A. Jena, N.-H. Yang, W. K. Pang, S.-F. Hu, H. Chang, C.-E. Liu, S.-C. Liao, J.-M. Chen, X. Guo, and R.-S. Liu, “An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12,” Journal of Materials Chemistry A, vol. 7, no. 14, pp. 8589–8601, 2019, doi: 10.1039/c9ta00417c.
[42] M. Abreu-Sepúlveda, D. E. Williams, A. Huq, C. Dhital, Y. Li, M. P. Paranthaman, K. Zaghib, and A. Manivannan, “Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes,” Ionics, vol. 22, no. 3, pp. 317–325, 2016, doi: 10.1007/s11581-015-1556-2.
[43] J. Košir, S. Mousavihashemi, B. P. Wilson, E. L. Rautama, and T. Kallio, “Comparative analysis on the thermal, structural, and electrochemical properties of Al-doped Li7La3Zr2O12 solid electrolytes through solid state and sol-gel routes,” Solid State Ionics, vol. 380, pp. 1–10, 2022, doi: 10.1016/j.ssi.2022.115943.
[44] S. K. Arifah, F. Rahmawati, and Y. Hidayat, “Cold isostatic pressing treatment in the preparation of Al and Y-Doped LLZO (Li6.15La3Zr1.75Al0.2Y0.25O12-δ) solid electrolyte,” in Recent Advances in Renewable Energy Systems, Select Proceeding of ICOME 2021, pp. 231–239, 2022, doi: 10.1007/978-981-19-1581-9_26.
[45] Y. Zhang, J. Deng, D. Hu, F. Chen, and Q. Shen, “Electrochimica acta synergistic regulation of garnet-type Ta-doped Li 7 La 3 Zr 2 O 12 solid electrolyte by Li þ concentration and Li þ transport channel size,” Electrochimica Acta, vol. 296, pp. 823–829, 2019, doi: 10.1016/ j.electacta.2018.11.136.
[46] W. Guo, F. Shen, J. Liu, Q. Zhang, H. Guo, Y. Yin, J. Gao, Z. Sun, X. Han, and Y. Hu, “In-situ optical observation of Li growth in garnet-type solid state electrolyte,” Energy Storage Materials, vol. 41, pp. 791–797, 2021, doi: 10.1016/j.ensm.2021.07.023.
[47] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, “Lithium metal anodes for rechargeable batteries,” Energy and Environmental Science, vol. 7, no. 2, 2014, doi: 10.1039/C3EE40795K.
[48] N. Bensalah and H. Dawood, “Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries,” Journal of Material Science & Engineering, vol. 5, no. 4, 2016, doi: 10.4172/2169-0022.1000258.
[49] Y. Zheng, J. Hwang, K. Matsumoto, and R. Hagiwara, “Charge-discharge properties and reaction mechanism of cation-disordered rutile-type Li1.2MnFe1.2F6.8,” Electrochimica Acta, vol. 405, 2022, Art. no. 139627, doi: 10.1016/j.electacta.2021.139627.DOI: 10.14416/j.asep.2024.09.006
Refbacks
- There are currently no refbacks.