Page Header

Low Temperature Sintering Al-B Doped-LLZO for All-Solid-State Lithium Battery

Fitria Rahmawati, Imam Shofid Alaih, Hartoto Nursukatmo, Hanida Nilasari, Soraya Muzayanza, Mohamad Firdaus Armaka, Edo Raihan

Abstract


This research synthesizes a double Al-B doped LLZO following a composition of Li7+0.5xLa1.14Al1.43xB0.5xZr2-3xO12-δ through a solid-state reaction. The materials were sintered at a low temperature of 900 °C, giving an advantage in reducing Li loss. The material was analyzed to understand the phase content, the crystal structure and cell parameters, the surface morphology, the impedance, the electrical conductivity, and the activation energy for ionic migration. As a result, the Al-B doped-LLZO with x composition of 0.3 (Li7.15La1.14Al0.429B0.15Zr1.1O12-d) and ball milling time of 120 h, LLZBAO(0.3)120 h, provides the highest ionic conductivity of 6.898×10–4 Scm–1 at room temperature, and it increases as the temperature increases confirming activation energy of 0.135 eV. A prototype of LCO-LLZBAO(0.3)120h-Li metal battery was produced and tested to investigate the solid electrolyte performance. A cyclic voltammetry analysis confirms a quasi-reversible reaction involving extraction-insertion of Li ions into LiCoO2. However, the excess capacity and a long plateau at low voltage also indicate the reduced Li+ into zero valent-metal, which is poorly reversible, causing the battery capacity to decrease and become stable after 20 cycles.

Keywords



[1]    K. B. Dermenci, A. F. Buluç, and S. Turan, “The effect of limonite addition on the performance of Li7La3Zr2O12,” Ceramics International, vol. 45, no. 17, pp. 21401–21408, 2019, doi: 10.1016/ j.ceramint.2019.07.128.

[2]    Z. Cao, X. Cao, X. Liu, W. He, Y. Gao, and J. Liu, “Effect of Sb-Ba codoping on the ionic conductivity,” Ceramics International, vol. 41, no. 5, pp. 6232–6236, 2015, doi: 10.1016/j. ceramint.2015.01.030.

[3]    L. Bai, W. Xue, Y. Li, X. Liu, Y. Li, and J. Sun, “The interfacial behaviours of all-solid-state lithium ion batteries,” Ceramics International, vol. 44, no. 7, pp. 7319–7328, 2018, doi: 10.1016/j.ceramint.2018.01.190.

[4]    C. Fang, X. Wang, and Y. S. Meng, “Key issues hindering a practical lithium-metal anode,” Trends in Chemistry, vol. 1, no. 2, pp. 152–158, 2019, doi: 10.1016/j.trechm.2019.02.015.

[5]    T. Wang, R. Zhang, Y. Wu, G. Zhu, C. Hu, J. Wen, and W. Luo, “Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries,” Journal of Energy Chemistry, vol. 46, pp. 187–190, 2020, doi: 10.1016/j.jechem.2019.10.010.

[6]    R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao, C. Yan, and J.-Q. Huang, “Artificial soft-rigid protective layer for dendrite-free lithium metal anode,” Advanced Functional Materials, vol. 28, no. 8, 2018, Art. no. 1705838, doi: 10.1002/adfm.201705838.

[7]    K. V. Kravchyk, D. T. Karabay, and M. V. Kovalenko, “On the feasibility of all-solid-state batteries with LLZO as a single electrolyte,” Scientific Reports, vol. 12, no. 1, pp. 1–10, 2022, doi: 10.1038/s41598-022-05141-x.

[8]    J. Shen, S. Liu, D. Bian, Z. Chen, H. Pan, C. Yang, W. Tian, Y. Li, L. Kong, H. Quan, D.-W. Wang, and S. Zhu, “Efficient nanoarchitectonics of solid-electrolyte-interface for high-performance all-solid-state lithium metal batteries via mild fluorination on polyethylene oxide,” Electrochimica Acta, vol. 456, 2023, Art. no. 142482, doi: 10.1016/j.electacta.2023.142482.

[9]    T. Ye, L. Li, and Y. Zhang, “Recent progress in solid electrolytes for energy storage devices,” Advanced Functional Materials, vol. 30, no. 29, 2020, Art. no. 2000077, doi: 10.1002/adfm. 202000077.

[10]  J.-G. Zhang, W. Xu, J. Xiao, X. Cao, and J. Liu, “Lithium metal anodes with nonaqueous electrolytes,” Chemical Reviews, vol. 120, no. 24, pp. 13312–13348, 2020, doi: 10.1021/acs.chemrev. 0c00275.

[11]  A. Neveu, V. Pelé, C. Jordy, and V. Pralong, “Exploration of Li–P–S–O composition for solid-state electrolyte materials discovery,” Journal of Power Sources, vol. 467, pp. 2–8, 2020, doi: 10.1016/j.jpowsour.2020.228250.

[12]  J. Lu, Y. Li, and Y. Ding, “Structure, stability, and ionic conductivity of perovskite Li2x-ySr1-x-yLayTiO3 solid electrolytes,” Ceramics International, vol. 46, no. 6, pp. 7741–7747, 2020, doi: 10.1016/j.ceramint.2019.11.277.

[13]  S. Narayanan, S. Reid, S. Butler, and V. Thangadurai, “Sintering temperature, excess sodium, and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12,” Solid State Ionics, vol. 331, pp. 22–29, 2019, doi: 10.1016/j.ssi. 2018.12.003.

[14]  L. Shen, L. Wang, Z. Wang, C. Jin, L. Peng, X. Pan, J. Sun, and R. Yang, “Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte,” Solid State Ionics, vol. 339, 2019, Art. no. 114992, doi: 10.1016/j.ssi.2019.05.027.

[15]  I. M. Hung and D. Mohanty, “Preparation and characterization of LLZO-LATP composite solid electrolyte for solid-state lithium-ion battery,” Solid State Communications, vol. 364, no. 135, 2023, Art. no. 115135, doi: 10.1016/j.ssc.2023. 115135.

[16]  S. Kobi and A. Mukhopadhyay, “Structural (in)stability and spontaneous cracking of Li-La-zirconate cubic garnet upon exposure to ambient atmosphere,” Journal of the European Ceramic Society, vol. 38, no. 14, pp. 4707–4718, 2018, doi: 10.1016/j.jeurceramsoc.2018.06.014.

[17]  E. A. Il’ina, A. A. Raskovalov, and A. P. Safronov, “The standard enthalpy of formation of superionic solid electrolyte Li7La3Zr2O12,” Thermochimica Acta, vol. 657, pp. 26–30, 2017, doi: 10.1016/j.tca.2017.09.019.

[18]  R. H. Brugge, J. A. Kilner, and A. Aguadero, “Germanium as a donor dopant in garnet electrolytes,” Solid State Ionics, vol. 337, pp. 154–160, 2019, doi: 10.1016/j.ssi.2019.04.021.

[19]  J. Su, X. Huang, Z. Song, T. Xiu, M. E. Badding, J. Jin, and Z. Wen, “Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal,” Ceramics International, vol. 45, no. 12, pp. 14991–14996, 2019, doi: 10.1016/j.ceramint. 2019.04.236.

[20]  X. Wang, J. Liu, R. Yin, Y. Xu, Y. Cui, L. Zhao, and X. Yu, “High lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2-xSmxO12 (x = 0–0.1) ceramics,” Materials Letters, vol. 231, pp. 43–46, 2018, doi: 10.1016/j.matlet. 2018.08.006.

[21]  Y. Gong, Z. G. Liu, Y. J. Jin, J. H. Ouyang, L. Chen, and Y. J. Wang, “Effect of sintering process on the microstructure and ionic conductivity of Li7–xLa3Zr2–xTaxO12 ceramics,” Ceramics International, vol. 45, no. 15, pp. 18439–18444, 2019, doi: 10.1016/j.ceramint. 2019.06.061.

[22]  G. Kalita, T. Endo, and T. Nishi, “Recent development on low temperature synthesis of cubic-phase LLZO electrolyte particles for application in all-solid-state batteries,” Journal of Alloys and Compounds, vol. 969, 2023, Art. no. 172282, doi: 10.1016/j.jallcom.2023.172282.

[23]  P. Zhao, G. Cao, Z. Jin, H. Ming, Y. Wen, Y. Xu, X. Zhu, Y. Xiang, and S. Zhang, “Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12,” Materials and Design, vol. 139, pp. 65–71, 2018, doi: 10.1016/j.matdes.2017.10.067.

[24]  J. Li, Z. Liu, W. Ma, H. Dong, K. Zhang, and R. Wang, “Low-temperature synthesis of cubic phase Li7La3Zr2O12 via sol-gel and ball milling induced phase transition,” Journal of Power Sources, vol. 412, pp. 189–196, 2019, doi: 10.1016/j.jpowsour.2018.11.040.

[25]  Z. Hu, H. Liu, H. Ruan, R. Hu, Y. Su, and L. Zhang, “High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction,” Ceramics International, vol. 42, no. 10, pp. 12156–12160, 2016, doi: 10.1016/ j.ceramint.2016.04.149.

[26]  Y. Tang, Z. Luo, T. Liu, P. Liu, Z. Li, and A. Lu, “Effects of B2O3 on microstructure and ionic conductivity of Li6.5La3Zr1.5Nb0.5O12 solid electrolyte,” Ceramics International, vol. 43, no. 15, pp. 11879–11884, 2017, doi: 10.1016/j.ceramint. 2017.06.035.

[27]  J. Adjah, K. I. Orisekeh, R. A. Ahmed, M. Vandadi, B. Agyei-Tuffour, D. Dodoo-Arhin, E. Nyankson, J. Asare, N. Rahbar, and W. O. Soboyejo, “Cyclic-induced deformation and the degradation of Al-doped LLZO electrolytes in all-solid-state Li-metal batteries,” Journal of Power Sources, vol. 594, 2024, doi: 10.1016/j.jpowsour.2023.234022.

[28]  D. Uzun, “Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium ion battery,” Solid State Ionics, vol. 281, pp. 73–81, 2015, doi: 10.1016/j.ssi.2015.09.008.

[29]  I. S. Alaih, K. D. Nugrahaningtyas, F. Rahmawati, M. F. Armaka, H. Haeruddin, and H. Nilasari, “Crystal structure and morphology of B-Al doped-lithium lantanum zirconate,” AIP Conference Proceedings, vol. 2391, 2022, doi: 10.1063/5.0072447.

[30]  F. Rahmawati, S. Wahyuningsih, and D. Irianti, “The photocatalytic activity of SiO2-TiO2/graphite and its composite with silver and silver oxide,” Bulletin of Chemical Reaction Engineering and Catalysis, vol. 9, no. 1, pp. 45–52, 2014, doi: 10.9767/bcrec.9.1.5374.45-52.

[31]  E. G. Temam, A. Elkhanssa, H. B. Temam, F. Kermiche, and H. Bentrah, “The influence of arabic gum on the catalytic properties of Ni-Mo alloy coatings to intensify hydrogen evolution reaction,” Anti-Corrosion Methods and Materials, vol. 64, no. 6, pp. 580–587, 2017, doi: 10.1108/ACMM-10-2016-1722.

[32]  E. Guettaf Temam, F. Djani, S. Rahmane, H. Ben Temam, and B. Gasmi, “Photocatalytic activity of Al/Ni doped TiO2 films synthesized by sol-gel method: Dependence on thickness and crystal growth of photocatalysts,” Surfaces and Interfaces, vol. 31, 2022, Art. no. 102077, doi: 10.1016/j.surfin.2022.102077.

[33]  L. Lemya, B. T. Hachemi, and G. T. Elhachmi, “Surface and electrochemical properties of electrodeposited Ni-WC nanocomposites coatings,” Main Group Chemistry, vol. 64, no. 6, pp. 763–772, 2017.

[34]  P. Martín, M. L. López, C. Pico, and M. L. Veiga, “Li(4-x)/3Ti(5-2x)/3CrxO4 (0 ≤ x ≤ 0.9) spinels: New negatives for lithium batteries,” Solid State Sciences, vol. 9, no. 6, pp. 521–526, 2007, doi: 10.1016/j.solidstatesciences.2007.03.023.

[35]  F. Rahmawati, N. Zuhrini, K. D. Nugrahaningtyas, and S. K. Arifah, “Yttria-stabilized zirconia (YSZ) film produced from an aqueous nano-YSZ slurry: Preparation and characterization,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4425–4434, 2019, doi: 10.1016/ j.jmrt.2019.07.054.

[36]  M. R. Bonilla, F. A. García Daza, J. Carrasco, and E. Akhmatskaya, “Exploring Li-ion conductivity in cubic, tetragonal and mixed-phase Al-substituted Li7La3Zr2O12 using atomistic simulations and effective medium theory,” Acta Materialia, vol. 175, pp. 426–435, 2019, doi: 10.1016/j.actamat.2019.06.033.

[37]  D. S. Aleksandrov, A. A. Popovich, W. Qingsheng, and P. A. Novikov, “Synthesis of tetragonal solid-state electrolyte Li7La3Zr2O12,” Materials Today: Proceedings, vol. 30, pp. 587–591, 2019, doi: 10.1016/j.matpr.2020.01.142.

[38]  J. K. Padarti, T. T. Jupalli, C. Hirayama, M. Senna, T. Kawaguchi, N. Sakamoto, N. Wakiya, and H. Suzuki, “Low-temperature processing of Garnet-type ion conductive cubic Li7La3Zr2O12 powders for high performance all solid-type Li-ion batteries,” Journal of the Taiwan Institute of Chemical Engineers, vol. 90, 2018, doi: 10.1016/ j.jtice.2018.02.021.

[39]  A. Moradabadi and P. Kaghazchi, “Effect of lattice and dopant–induced strain on the conductivity of solid electrolytes: application of the elastic dipole method,” Materialia, vol. 9, 2020, Art. no. 100607, doi: 10.1016/j.mtla.2020. 100607.

[40]  D. Rettenwander, A. Welzl, L. Cheng, J. Fleig, M. Musso, E. Suard, M. M. Doeff, G. J. Redhammer, and G. Amthauer, “Synthesis, crystal chemistry, and electrochemical properties of Li 7–2 x La 3 Zr 2– x Mo x O 12 ( x = 0.1–0.4): Stabilization of the cubic garnet polymorph via substitution of Zr 4+ by Mo 6+,” Inorganic Chemistry, vol. 54, no. 21, pp. 10440–10449, 2015, doi: 10.1021/acs.inorgchem.5b01895.

[41]  Y. Meesala, Y. K. Liao, A. Jena, N.-H. Yang,  W. K. Pang, S.-F. Hu, H. Chang, C.-E. Liu, S.-C. Liao, J.-M. Chen, X. Guo, and  R.-S. Liu, “An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12,” Journal of Materials Chemistry A, vol. 7, no. 14, pp. 8589–8601, 2019, doi: 10.1039/c9ta00417c.

[42]  M. Abreu-Sepúlveda, D. E. Williams, A. Huq, C. Dhital, Y. Li, M. P. Paranthaman, K. Zaghib, and A. Manivannan, “Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes,” Ionics, vol. 22, no. 3, pp. 317–325, 2016, doi: 10.1007/s11581-015-1556-2.

[43]  J. Košir, S. Mousavihashemi, B. P. Wilson, E. L. Rautama, and T. Kallio, “Comparative analysis on the thermal, structural, and electrochemical properties of Al-doped Li7La3Zr2O12 solid electrolytes through solid state and sol-gel routes,” Solid State Ionics, vol. 380, pp. 1–10, 2022, doi: 10.1016/j.ssi.2022.115943.

[44]  S. K. Arifah, F. Rahmawati, and Y. Hidayat, “Cold isostatic pressing treatment in the preparation of Al and Y-Doped LLZO (Li6.15La3Zr1.75Al0.2Y0.25O12-δ) solid electrolyte,” in Recent Advances in Renewable Energy Systems, Select Proceeding of ICOME 2021, pp. 231–239, 2022, doi: 10.1007/978-981-19-1581-9_26.

[45]  Y. Zhang, J. Deng, D. Hu, F. Chen, and Q. Shen, “Electrochimica acta synergistic regulation of garnet-type Ta-doped Li 7 La 3 Zr 2 O 12 solid electrolyte by Li þ concentration and Li þ transport channel size,” Electrochimica Acta, vol. 296, pp. 823–829, 2019, doi: 10.1016/ j.electacta.2018.11.136.

[46]  W. Guo, F. Shen, J. Liu, Q. Zhang, H. Guo, Y. Yin, J. Gao, Z. Sun, X. Han, and Y. Hu, “In-situ optical observation of Li growth in garnet-type solid state electrolyte,” Energy Storage Materials, vol. 41, pp. 791–797, 2021, doi: 10.1016/j.ensm.2021.07.023.

[47]  W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, “Lithium metal anodes for rechargeable batteries,” Energy and Environmental Science, vol. 7, no. 2, 2014, doi: 10.1039/C3EE40795K.

[48]  N. Bensalah and H. Dawood, “Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries,” Journal of Material Science & Engineering, vol. 5, no. 4, 2016, doi: 10.4172/2169-0022.1000258.

[49]  Y. Zheng, J. Hwang, K. Matsumoto, and R. Hagiwara, “Charge-discharge properties and reaction mechanism of cation-disordered rutile-type Li1.2MnFe1.2F6.8,” Electrochimica Acta, vol. 405, 2022, Art. no. 139627, doi: 10.1016/j.electacta.2021.139627.

Full Text: PDF

DOI: 10.14416/j.asep.2024.09.006

Refbacks

  • There are currently no refbacks.