Effects of Parameters on Heat Transfer Characteristics of a Rectangular Cross Section Heat Pipe with Mesh Wick
Abstract
Keywords
[1] S. Sichamnan, T. Chompookham, and S. Rittidech, “Efficiency enhancement of solar panels using copper mesh wick heat pipe,” UBU Engineering Journal, vol. 9, no. 1, pp. 11–22, 2016.
[2] R. Sampan, Advanced Heat Pipe. Maha Sarakham, Thailand: Apichat Printing, 2013.
[3] A. Rodbumrung, “Influence of corrosion on the thermal performance and life time of heat pipe with sintered wick,” Ph.D. dissertation, Faculty of Engineering, Mahasarakham University, Maha Sarakham, 2016.
[4] P. Naphon, “On the performance of air conditioner with heat pipe for cooling air in the condenser,” Energy Conversion and Management, vol. 51, no. 11, pp. 2362–2366, 2010.
[5] L. L. Vasiliev, “Micro and miniature heat pipes – Electronic component coolers,” Applied Thermal Engineering, vol. 28, no. 4, pp. 266–273, 2008.
[6] H. Akachi, F. Polasek, and P. Stulc, “Pulsating heat pipes,” in the 5th International Heat Pipe Symposium, 1996, pp. 208–217.
[7] W. Srimuang, P. Khantikomol, and B. Krittacom, “An experimental investigation of effectiveness of a closed-end flat heat pipe heat exchanger,” KKU Engineering Journal, vol. 40, no. 1, pp. 21–27, 2013.
[8] L. G. Asirvatham, R. Nimmagadda, and S. Wongwises, “Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid,” International Journal of Heat and Mass Transfer, vol. 60, pp. 201–209, 2013.
[9] P. Naphon, P. Assadamongkol, and T. Borirak, “Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency,” International Communications in Heat and Mass Transfer, vol. 35, no. 10, pp. 1316–1319, 2008.
[10] K. H. Do and S. P. Jang, “Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick,” International Journal of Heat and Mass Transfer, vol. 53, no. 9–10, pp. 2183–2192, 2010.
[11] P. Amatachaya and W. Srimuang, “Comparative heat transfer characteristics of a flat two-phase closed thermosyphon (FTPCT) and a conventional two-phase closed thermosyphon (CTPCT),” International Communications in Heat and Mass Transfer, vol. 37, no. 3, pp. 293–298, 2010.
[12] N. Bhuwakietkumjohn and T. Parametthanuwat, “Heat transfer behaviour of silver particles containing oleic acid surfactant: Application in a two phase closed rectangular cross sectional thermosyphon (RTPTC),” Heat and Mass Transfer, vol. 53, no. 1, pp. 37–48, 2016.
[13] W. Srimuang, S. Rittidech, and B. Bubphachot, “Heat transfer characteristics of a vertical flat thermosyphon (VFT),” Journal of Mechanical Science and Technology, vol. 23, no. 9, pp. 2548– 2554, 2009.
[14] F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer. Michigan: Wiley, 1996.
[15] H. Li, F. Jiang, G. Qi, and X. Li, “Investigation of the thermal performance of a novel thermosyphon combined with fluidized bed heat transfer technology,” Powder Technology, vol. 374, pp. 40–48, 2020.
[16] K. H. Do, H. J. Ha, and S. P. Jang, “Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids,” International Journal of Heat and Mass Transfer, vol. 53, no. 25–26, pp. 5888–5894, 2010.
[17] S. Satitpong, B. Supattra, and R. Sampan, “Study of parameters have effected to the heat pipe with mesh wick,” RMUTP Research, vol. 12, no. 2, pp. 172–183, 2018.
[18] M. M. Sarafraz, O. Pourmehran, B. Yang, and M. Arjomandi, “Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids,” Renewable Energy, vol. 136, pp. 884–895, 2019.
[19] M. Kaya, “An experimental investigation on thermal efficiency of two-phase closed thermosyphon (TPCT) filled with CuO/water nanofluid,” Engineering Science and Technology, an International Journal, vol. 23, no. 4, pp. 812– 820, 2020.
[20] P. H. D. Santos, K. A. T. Vicente, L. Santos Reis, L. S. Marquardt, and T. A. Alves, “Modeling and experimental tests of a copper thermosyphon,” Acta Scientiarum Technology, vol. 39, no. 1, pp. 59–68, 2017.
[21] P. Thanya, R. Sampan, P. Adisak, Y. Ding, and S. Witharana, “Application of silver nanofluid containing oleicacid surfactant in a thermosyphon economizer,” Nanoscale Research Letters, vol. 6, 2011, Art. no. 315.
[22] D. Reay and P. Kew, Heat Pipe, Theory, Design and Application, 5th ed. Oxford, UK: Butterworth-Heinemann, 2006.
[23] A. Faghri, Heat Pipe Science and Technology. Washington, DC: Taylor & Francis, 1995.
[24] P. Terdtoon, Boiling. Chiang Mai, Thailand: Chiang Mai University, 2001.
[25] C. Piyanun, Heat Pipe Technologies. Phitsanulok, Thailand: Focus Printing, 2012.
[26] S. Sichamnan, “Flow patterns and heat transfer characteristic of two-phase closed rectangular cross sectional area thermosyphon,” Ph.D. dissertation, Department of Mechanical Engineering, Faculty of Engineering, Mahasarakham University, Maha Sarakham, 2019.
[27] T. Chompookham, S. Sichamnan, N. Bhuwakietkumjohn, and T. Parametthanuwat, “The rectangular two-phase closed thermosyphon: A case study of two-phase internal flow patterns behaviour for heat performance,” Archives of Thermodynamics, vol. 41, no. 3, pp. 223–254, 2020.
[28] S. V. Mutalikdesai and A. M. Kate, “Experimental investigation of an aluminium thermosyphon at normal operating conditions,” Journal of Thermal Engineering, vol. 6, no. 5, pp. 724–735, 2020.
[29] S. Sichamnan, “A mathematic model of photovoltaic solar collectors by heat pipe installation,” M.S. thesis, Department of Mechanical Engineering, Faculty of Engineering, Mahasarakham University, Maha Sarakham, 2015.
DOI: 10.14416/j.asep.2021.11.010
Refbacks
- There are currently no refbacks.