Numerical and Physical Investigation of the Mixing Process in Gas Stirred Ladle System
Abstract
Keywords
[1] D. Mazumdar and J. W. Evans, Modeling of Steelmaking Processes. Florida: CRC Press, 2009, p. 493.
[2] H. M. Issa, “Power consumption, mixing time, and oxygen mass transfer in a gas-liquid contactor stirred with a dual impeller for different spacing,” Journal of Engineering, vol. 2016, pp. 1–7, 2017.
[3] D. Mazumdar and R. I. L. Guthrie, “The physical and mathematical modelling of gas stirred ladle systems,” ISIJ International, vol. 35, no. 1, pp. 1–20, 1995.
[4] S. Lakkum and P. Kowitwarangkul, “Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 526, pp. 1–5.
[5] J. Mandal, S. Patil, M. Madan, and D. Mazumdar, “Mixing time and correlation for ladles stirred with dual porous plugs,” Metallurgical and Materials Transactions B, vol. 36, no. 4, pp. 479–487, 2015.
[6] K. M. A. Ali, “Parameters influence on mixing time of gas liquid agitation system,” Journal of University/Engineering Sciences, vol. 22, no. 2, pp. 403–412, 2014.
[7] F. Karouni, B. P. Wynne, J. T.-Silva, and S. Phillips, “Modeling the effect of plug positions and ladle aspect ratio on hydrogen removal in the Vacuum Arc Degasser,” Steel Research International, vol. 89, no. 5, pp. 1–8, 2018.
[8] S. Torres and M. A. Barron, “Numerical simulation of an argon stirred ladle with top and bottom injection,” Open Journal of Applied Science, vol. 6, no. 13, pp. 860–867, 2018.
[9] K. B. Owusu, T. Haas, P. Gajjar, M. Eickhoff, P. Kowitwarangkul, and H. Pfeifer, “Interaction of injector design, bubble size, flow structure, and turbulence in ladle metallurgy,” Steel Research International, vol. 90, no. 2, pp. 1–10, 2018.
[10] P. Gajjar, T. Haas, K. B. Owusu, M. Eickhoff, P. Kowitwarangkul, and H. Pfeifer, “Physical study of the impact of injector design on mixing, convection and turbulence in ladle metallurgy,” Engineering Science and Technology, an International Journal, vol. 22, no. 2, pp. 538–547, 2018.
[11] D. Mazumdar and R. I. L. Guthrie, “An assessment of a two phase calculation procedure for hydrodynamic modelling of submerged gas injection in ladles,” ISIJ International, vol. 34, no. 5, pp. 384–392, 1994.
[12] M. Madan, D. Satish, and D. Mazumdar, “Modeling of mixing in ladles fitted with dual plugs,” ISIJ International, vol. 45, no. 5, pp. 677–685, 2005.
[13] D. Mazumdar, H. B. Kim, and R. I. L. Guthrie, “Modelling criteria for flow simulation in gas stirred ladles: Experimental study,” Ironmaking and Steelmaking, vol. 27, no. 4, pp. 302–309, 2000.
[14] D. Mazumdar, P. Dhandapani, and R. Sarvanakumar, “Modeling and optimisation of gas stirred ladle systems,” ISIJ International, vol. 57, no. 2, pp. 286– 295, 2017.
[15] D. Mazumdar, G. Yamanoglu, R. Shankarnarayanan, and R. I. L. Guthrie, “Similarity considerations in the physical modelling of steel making tundish systems,” Steel Research International, vol. 66, no. 1, pp. 14–19 1995.
[16] V. Heller, “Scale effects in physical hydraulic engineering models,” Journal of Hydraulic Research, vol.49, no. 3, pp. 293-306, 2011.
[17] P. Kowitwarangkul, M. Kamonrattanapisud, E. Juntarasaro, and D. Sukam, “CFD simulation of moltenstell flow with isothermal condition in continuous casting tundish,” King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology, vol. 9, no. 2, pp. 71–77, 2016.
[18] N. Hasan, “Validation of CFD models using FLOW3D for a submerged liquid jet,” presented at the Ninth International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia, Dec. 10–12, 2012.
[19] FLOW-3D. Flow Science, Inc. Accessed: Mar. 2, 2020 [Online]. Available: https://www.flow3d.com
[20] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique,” Physics of Fluids A, vol. 4, no. 7, pp. 1510–1520, 1992.
[21] H. Liu, Z. Qi, and M. Xu, “Numerical simulation of fluid flow and interfacial behavior in threephase argon-stirred ladles with one plug and dual plugs,” Steel Research International, vol. 82, no. 4, pp. 440–458, 2011.
[22] M.-Y. Zhu, T. Inomoto, I. Sawada, and T.-C. Hsiao, “Fluid flow and mixing phenomena in the ladle stirred by argon through multi-tuyere,” ISIJ International, vol. 35, no. 5, pp. 472–479, 1995.
[23] A. Huang, H. Gu, M. Zhang, N. Wang, T. Wang, and Y. Zou, “Mathematical modeling on erosion characteristics of refining ladle lining with application of purging plug,” Metallurgical and Materials Transactions B, vol. 44, no. 3, pp. 744–749, 2013.
DOI: 10.14416/j.asep.2020.07.001
Refbacks
- There are currently no refbacks.