Page Header

การศึกษาอิทธิพลของตัวแปรการเจียระไนที่มีผลต่อความแข็งและโครงสร้างของผิวชิ้นงานที่ผ่านการตีขึ้นรูปร้อน
Study the Effect of Grinding Parameter on the Surface Hardness and Structure of the Hot Forged Product

Anas Chalermsilp, Surasak Suranuntchai

Abstract


งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาตัวแปรที่มีอิทธิพลในกระบวนการเจียระไนแบบสายพานที่ส่งผลกระทบต่อความแข็งผิววัสดุโลหะเหล็กเกรด S45C ที่ผ่านการตีขึ้นรูปร้อนและผ่านการอบชุบทางความร้อน โดยใช้การออกแบบการทดลองเพื่อหาปัจจัยที่มีนัยสำคัญ ปัจจัยที่นำมา 4 ปัจจัย ขนาดพื้นที่หน้าตัดชิ้นงานแรงกดชิ้นงานจากการถ่วงน้ำหนักดันป้อนชิ้นงานช่วงระยะเวลาในการเจียระไน และสภาพของผ้าทรายสายพานรวมถึงขนาดเบอร์ของผ้าทรายสายพาน จากค่าความแข็งผิวชิ้นงานที่ตรวจสอบก่อนการทดลองอยู่ระหว่าง 20–26 HRC ผลจากการทดลองพบว่า ค่าความแข็งผิวชิ้นงานที่เปลี่ยนแปลงจากเดิมเพิ่มมากขึ้นเกิน 26 HRC จากผลกระทบปัจจัยที่มีนัยสำคัญทั้งหมด 3 ปัจจัย นำสู่การวิเคราะห์หาตัวแปรที่ส่งผลกระทบต่อความแข็งผิววัสดุ ได้รับอิทธิพลจากผ้าทรายสายพานที่สึกหรอจนหมดสภาพการตัดเฉือนผิววัสดุส่งผลกระทบให้วัสดุได้รับความเค้น ซึ่งความเค้นนั้นมีความสัมพันธ์กับความแข็งผิววัสดุ

This research aims to investigate how the surface hardness of S45C metal, which has been hot-forged and heat-treated, is affected by the parameters of the abrasive belt grinding process. The experiment was designed using the Design of Experiments (DOE) method to identify significant factors. Four factors were analyzed: the cross-sectional area, the weight applied to the specimens, the grinding duration, and the abrasive belt stages, including the size of the abrasive grains. Initially, the surface hardness of the specimens was measured between 20–26 HRC. The results showed that the surface hardness of the specimens increased to over 26 HRC. As a result, the experiment identified three significant factors that influence the surface hardness of the material. It was found that as the abrasive belt wore down and became completely flat, it affected the stress applied during the experiment. Consequently, the research sought to examine the stress associated with hard materials.


Keywords



[1] T. Altan, G. Ngaile, and G. Shen, “Presses and Hammer for cold and hot forging,” in Cold and Hot Forging: Fundamentals and Applications, Ohio: ASM International, 2005, pp 115–135.

[2] Z. Gronostajski and M. Hawryluk, “The main aspects of precision forging,” Archives of Civil and Mechanical Engineering, vol. 8, no. 2, pp. 39–55, 2008.

[3] Z. Gronostajski, M. Hawryluk, J. Jakubik, M. Kaszuba, G. Misiun and P. Sadowski, “Solution examples of selected issues related to die forging,” Institute of Metallurgy and Materials Science of Polish Academy of Sciences, vol. 60, no. 4, pp. 2773–2782, 2015.

[4] M. Swink, S. Melnyk, M. B. Cooper, and J. Hartley, Managing Operations across Supply Chain. 3rd ed. New York: McGraw-Hill, 2016.

[5] R. Verma and K. Boyer, Operations and Supply Chain Management: World Class Theory and Practice, Tennessee: South-Western, 2010.

[6] T. Narongsak, Manufacturing Processes. Bangkok: Se-Education Public Company Limited, 2016 (in Thai).

[7] L. Zou, Y. Huang, G. Zhang, and X. Cui, “Feasibility study of a flexible grinding method for precision machining of the TiAl-based alloy,” Materials and Manufacturing Processes, vol. 34, no. 10, pp. 1106–1168, Jun. 2019.

[8] X. Ren, X. Huang, Z. Chai, L. Li, H. Chen, Y. He, and X. Chen, “A study of dynamic energy partition in belt grinding based on grinding effects and temperature dependent mechanical properties,” Journal of Materials Processing Technology, vol. 294, Aug. 2021.

[9] X. Xu, W. Chen, D. Zhu, S. Yan, and H. Ding, “Hybrid active/passive force control strategy for grinding marks suppression and profile accuracy enhancement in robotic belt grinding of turbine blade,” Robotics and Computer Integrated Manufacturing, vol. 67, Feb. 2021.

[10] A. Micietova, J. Pistora, Z. Durstova, and M. Neslusan, “Concept of damage monitoring after grinding for components of variable hardness,” Procedia Material Science, vol. 12, pp. 60–65, 2016.

[11] O. Goratouch, K. Anak, K. Julathep, and K. Katsuyoshi, “Effects of the secondary shot in the double shot peening process on the residual compressive stress distribution of Ti-6Al-4V,” Heliyon, vol. 8, no. 1, Jun. 2022.

[12] L. Sukangkana, W. Shokul, A. Watcharin, S. Jutharat, and B. Benjamas, “A comparison of hardness of the medium carbon steels between oil quench and hard facing welding in the abrasive application,” in Conference of Industrial Engineer Network, Phetchaburi, 2012, pp. 1331–1336 (in Thai).

[13] C. Wang, Y. Wu, H. Liao, C. Deng, J. Luo, and Y. Huang, “Influence of contact force and rubber wheel hardness on material removal in abrasive belt grinding investigated by physical simulator,” Precision Engineering, vol. 78, pp. 70–78, Nov. 2022.

[14] H. Li, L. Zou, W. Wang, and H. Li, “Introducing abrasive wear into undeformed chip thickness modeling with improved grain kinematics in belt grinding,” Journal of Manufacturing Processes, vol. 108, pp. 903–915, Dec. 2023.

[15] T. Chalermchai, “Correlation and regression analysis,” in Analysis Statistical Data with Program Minitab, Bangkok: Simplify, 2020, pp. 203–222 (in Thai).

[16] N. Wang, G. Zhang, L. Ren, and Z. Yang, “Analysis of abrasive grain size effect of abrasive belt on material removal performance of GCr15 bearing steel,” Tribology International, vol. 171, Jul. 2022.

[17] T. Sirichai and W. Anucha, Basic Metal Forming Technology, Bangkok: Se-Education Public Company Limited, 2017 (in Thai).

[18] S. Jurarat, P. Sansot, J. Tanakorn, and K. Anak, “Investigation of surface hardness and roughness on formability of aluminum alloy sheet AA20249-T3 subjected to the shot to the shot peening process by silica shots,” Journal of Metals, Materials and Minerals (JMMM), vol. 33, No. 1, pp. 56–64, 2023 (in Thai).

[19] Y. Harada, K. Fukaura, and S. Haga, “Influence of micro shot peening on surface layer characteristics of structural steel,” Material Processing Technology, vol. 191, pp. 297–301, Aug. 2007.

[20] L. Tang, C. Gao, J. Huang, H. Zhang, and W. Chang, “Dry sliding friction and wear behaviour of hardened AISI D2 tool steel with different hardness level,” Tribology International, vol. 66, pp. 165–173, Oct. 2013.

[21] Y. Lin, S. He, D. Lai, J. Wei, Q. Ji, J. Huang, and M. Pan, “Wear mechanism and tool life prediction of high-strength vermicular graphite cast iron tools for high-efficiency cutting,” Wear, vol. 454–455, Aug. 2020.

[22] C. William, Materials Science and Engineering an Introduction. 6th ed. New York: Wiley, 2002.

[23] IM. Hutchings, “The contributions of david tabor to the science of indentation hardness,” Journal of Materials Research (JMR), vol. 24, pp. 581–589, Mar. 2009.

[24] G. Xiao, Y. Zhang, B. Zhu, H. Gao, Y. Huang, and K. Zhou “Wear behavior of alumina abrasive belt and its effect on surface integrity of titanium alloy during conventional and creep-feed grinding,” Wear, vol. 514–515, Feb. 2023.

[25] K. Hemmesi, P. mallet, and M. Farajian “Numerical evaluation of surface welding residual stress behavior under multiaxial mechanical loading and experimental validations,” International Journal of Mechanical Sciences (IJMS), vol. 168, 2020.

[26] P. Weerasak and T. Pongsak, “The effect of temperature and tensile test speeds on mechanical properties of cromium alloy steel AISI 5120,” in Conference of Mechanical Engineering Network of Thailand, Prachinburi, Oct. 2003 (in Thai).

[27] P. Natthasak and K. Chalermpol, “A study on influence temperature of thick part in blanking die,” in Conference of Industrial Engineer Network, Phetchaburi, Oct 2012, pp. 1363–1368 (in Thai).

[28] D. Pakorn and C. Virat, “Effect of temperature on mechanical properties of materials,” in Conference of Mechanical Engineering Network of Thailand, Oct. 2004. (in Thai).

Full Text: PDF

DOI: 10.14416/j.kmutnb.2024.11.001

ISSN: 2985-2145