Page Header

การออกแบบและพัฒนาแขนหุ่นยนต์เพื่อช่วยในกระบวนการผลิตโดยใช้เทคนิคแมชชีนวิชัน
The Design and Development of Robotic Arms to Assist in Manufacturing Processes Using Machine Vision Techniques

Lapitch Polsan, Withit Chatlatanagulchai, Sathit Wanwanitchai

Abstract


บทความนี้เป็นการนำเสนอการออกแบบพัฒนาและการสร้างต้นแบบแขนกลคู่ร่วมกับกล้องเพื่อการรับรู้ที่เป็นการมองเห็น โดยมีลักษณะการทำกิจกรรมคล้ายมนุษย์เพื่อใช้การคัดแยกวัตถุ หยิบจับและการตรวจสอบวัตถุที่พิจารณาหรือ กิจกรรมอื่น ๆ ซึ่งใช้มนุษย์ในการตัดสินใจเป็นหลัก โดยทำการศึกษาการใช้กล้องกับแขนกลคู่ในการตรวจจับวัตถุที่มีการวางตำแหน่งและทิศทางที่เป็นอิสระโดยสามารถคัดเลือกวัตถุตามรุ่นหรือลักษณะที่สนใจและการตรวจสอบคุณภาพหรือโดยส่วนประกอบสำคัญสองส่วนคือการสร้างแขนกล แบบอาร์ติคิวลาต 6 แกนอิสระ (Articulated Robot Arm) สองแขนที่สามารถทำงาน โดยอัติโนมัติ ด้วยความสอดคล้องกัน โดยการสร้างส่วนประกอบของแขนกลด้วยการพิมพ์แบบ 3 มิติ (3D Print) และการสร้างโปรแกรมเพื่อการรับรู้ (Machine Vision และ Image Processing) ของแขนกลในการตอบสนองในการคัดแยกวัตถุและตำแหน่งทิศทางของวัตถุ (Objective Detection; Convolutional Neural Network หรือ CNN และ Co-ordinates of Contours; Opencv Library) ด้วยการใช้งานผ่านการแสดงผลทางสัญลักษณ์ Graphical User Interface ด้วยภาษาไพธอน (Python) ใช้งานผ่านบอร์ด ไมโครโปรเซสเซอร์ราสเบอร์รี่พาย 4 (Raspberry Pi 4 Microprocessor Board) และบอร์ดไมโครคอนโทรล เลอร์อาร์ดูโน่ (Arduino Microcontroller Board) ที่ผ่านการสื่อสารแบบ I2C เพื่อควบคุมชุดขับด้วยการควบคุมหมุนองศาและทิศทางของสเต็ปเปอร์มอเตอร์ (Stepper Motor) ของข้อต่อแต่ละข้อของแขนกลทั้งสอง จากผลการวิจัยพบว่า แนะนำให้ใช้แขนกลทั้งสองในการจับยึดชิ้นงานที่มีพิกัดความคลาดเคลื่อน สำหรับตำแหน่งแกน x, y และ z แนะนำให้ใช้ค่าเบี่ยงเบน 3±1.22 เซนติเมตร โดยมีช่วงค่าเฉลี่ยกลางอยู่ที่ –1 ถึง 1.125 เซนติเมตร สำหรับมุมการหมุนแนะนำค่าชดเชย –7±11.5 องศา โดยมีช่วงค่าเฉลี่ยกลางอยู่ที่ –3.65 ถึง 0 องศาระหว่างการจับยึด

This article presents the design, development, and prototyping of a dual-arm robot equipped with a camera for visual perception. The dual-arm robot is designed to replicate human-like activities, including object sorting, picking up items, examining objects for decision-making, and performing other tasks typically reliant on human decision-making processes. The study employs the camera-equipped dual-arm robot to autonomously detect objects with varying positions and orientations. The system can select objects based on predefined models or specific characteristics and examine object quality. This research includes two main components: the creation of two independent 6-axis articulated robot arms using 3D printing and the development of a perception program in Python. This program utilizes machine vision techniques and image processing with Convolutional Neural Network (CNN) and the OpenCV library for the robot's response in sorting tasks, based on the position and direction of the object. These techniques determine the coordinates of contours, which are crucial for object detection. Control is facilitated through a Graphical User Interface (GUI) on the Raspberry Pi 4 microprocessor board and Arduino microcontroller board via I2C communication, managing the stepper motors' rotation degree and direction for each joint of both robotic arms. Based on the research findings, it is recommended to use both robotic arms for gripping workpieces with tolerance coordinates. For the x, y, and z positions, a deviation of 3±1.22 centimeters is recommended, with a mean range of –1 to 1.125 centimeters for the x, y, and z axes. For orientation angles, a compensation value of –7±11.5 degrees is suggested, with a mean range of –3.65 to 0 degrees during gripping.


Keywords



[1] E. Ananias and P. D. Gaspar, “A Low-cost collaborative robot for science and education purposes to foster the Industry 4.0 implementation,” Applied System Innovation, vol. 5, no. 4, pp. 72–98, 2022.

[2] Zhihuijun. I made a dummy robotic arm from scratch. (Oct. 7, 2021). YouTube. [Online Video]. Available: https://www.youtube.com/ watch?v=F29vrvUwqS4

[3] P. Ociepka and K. Herbus, “Strength analysis of parallel robot components in PLM Siemens NX 8.5 program,” in IOP Conference Series: Materials Science and Engineering, 2015, vol. 95.

[4] W. Polsan and P. Kunthong, “Fatigue lifetime estimation of rot samlor skylab structure,” presented at the 22nd Conference of Mechanical Engineering Network of Thailand, Bangkok, Thailand, Oct. 15–17, 2008 (in Thai).

[5] L. Armesto. An example on how to compute the inverse kinematics of a Robot Robotic Systems. (Dec. 28, 2020). YouTube. [Online Video].Available: https://www.youtube.com/ watch?v=wmE1KQJmzVM

[6] C. Annin. 6axis robot kinematics Part 3, YouTube. (Jun. 3, 2017). [Online Video]. Available: https:// www.youtube.com/watch?v=oiAiuFK7yi0

[7] J. Wang, C. Dai, K. Shi, and R. Qin, “Research on rigid body motion tracing in space based on NX MCD,” presented at the International Conference on Robotics and Mechatronics (ICRoM 2017), Series: Materials Science and Engineering, vol. 320, 2018.

[8] K. Chantarasamai, W. Thasana, T. Homchampa, and P. Chalisathanakritdakarn, “The study of factors affecting mechanical properties of 3D printing with a 6-axis robotic arm,” Agriculture and Technology Journal, vol. 3, no. 2, pp. 1–11, 2022 (in Thai).

[9] Y. Tian, W. Feng, M. Ouyang, H. Bian, and Q. Chen, “A positioning error compensation method for multiple degrees of freedom robot arm based on the measured and target position error,” Advances in Mechanical Engineering, vol. 14, no. 5, pp. 1–13, 2022.

[10] H. Smatla, R. Shaw, S. Esse, and L. Rhodes, “Implementing nonlinear control of a six degree of freedom robotic arm on a raspberry Pi 3,” presented at the 35th Florida Conference on Recent Advances in Robotics, Embry-Riddle Aeronautical University, Prescott, Arizona, May 12–13, 2022.

[11] A. Sodemann. Robotics 2 2018, YouTube. (Dec. 12, 2017). [Online Video]. Available: https:// www.youtube.com/playlist?list=PLT_0lwItn0s Afi3o4xwx-fNfcnbfMrXa7

[12] R. Anderl and P. Binde, Simulations with NX: Kinematics, FEA, CFD, EM and Data Management with Numerous Examples of NX 9. Hanser Publications, Munich, Germany, 2014.

[13] R. B. Kristiawan, F. Imaduddin, D. Ariawan, Ubaidillah, and Z. Arifin, “A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters,” Open Engineering, vol. 11, no. 1, pp. 639–649, 2021.

[14] P. Ferretti, C. Leon-Cardenas, G. M. Santi, M. Sali, E. Ciotti, L. Frizziero, G. Donnici, and A. Liverani, “Relationship between FDM 3D printing parameters study: Parameter optimization for lower defects,” Polymers, vol. 13, no. 13, pp. 921–929, 2021.

[15] L. Armesto. (2020, Dec. 22) Closed-form Inverse Kinematics for Robots with a Spherical Wrist Robotic Systems, YouTube. [Online]. Available: https://www.youtube.com/ watch?v=hEQ1p2Wffm

[16] L. V. G. Khánh. Introduction to object detection on Raspberry Pi. (Dec. 9, 2021). TensorFlow. [Online Video]. Available: https://www.you tube.com/watch?v=mNJXEybFn98&t=1s

[17] V. Lendave (2021). “Detecting Orientation of Objects in Image using PCA and OpenCV, Analytics India Magazine.” [Online]. Available: https://analyticsindiamag.com/detectingorientation- of-objects-in-image-using-pca-andopencv/

Full Text: PDF

DOI: 10.14416//j.kmutnb.2024.10.013

ISSN: 2985-2145