การเปรียบเทียบตัวแบบการแจกแจงค่าสุดขีดนัยทั่วไปของปริมาณน้ำฝนในจังหวัดภาคตะวันออกของประเทศไทย
A Comparison of Modelling Generalized Extreme Value Distribution of Rainfall Volume in Eastern Thailand Provinces
Abstract
ในการศึกษาครั้งนี้มีวัตถุประสงค์เพื่อเปรียบเทียบตัวแบบการแจกแจงค่าสุดขีดนัยทั่วไป ที่เหมาะสมกับข้อมูลปริมาณน้ำฝนสูงสุดรายปี ตั้งแต่ พ.ศ. 2536 ถึง 2565 เป็นระยะเวลา 30 ปี บริเวณภาคตะวันออกของประเทศไทย ประกอบด้วยจังหวัดจันทบุรี ชลบุรี ปราจีนบุรี ระยอง สระแก้ว และตราด ในการศึกษานี้พิจารณาเปรียบเทียบการแจกแจงค่าสุดขีดนัยทั่วไป เมื่อกระบวนการคงที่และไม่คงที่ซึ่งมีการกำหนดให้พารามิเตอร์เปลี่ยนแปลงขึ้นอยู่กับเวลาที่แตกต่างกัน 8 ตัวแบบ โดยตัวแบบที่เหมาะสมจะพิจารณาจากการทดสอบภาวะสารูปสนิทดี และเกณฑ์การคัดเลือกตัวแบบโดยข้อสนเทศของอาไคเคะ ในการประมาณค่าพารามิเตอร์จะใช้วิธีภาวะน่าจะเป็นสูงสุด นอกจากนี้ยังมีการศึกษาค่าประมาณระดับการเกิดซ้ำของปริมาณน้ำฝน ในรอบปีการเกิดซ้ำ 2 5 10 20 และ 100 ปี ผลการศึกษาพบว่า มี 2 จังหวัด ได้แก่ จันทบุรี และปราจีนบุรี เหมาะสมกับการแจกแจงฟรีเซทและมี 4 จังหวัด ได้แก่ ชลบุรี ระยอง สระแก้ว และตราด เหมาะสมกับการแจกแจงกัมเบล สำหรับจันทบุรีและตราด เหมาะสมกับตัวแบบภายใต้กระบวนการคงที่ ส่วนชลบุรี ปราจีนบุรี ระยอง และสระแก้ว เหมาะสมกับตัวแบบภายใต้กระบวนการไม่คงที่ และเมื่อพิจารณาระดับการเกิดซ้ำของปริมาณน้ำฝนพบว่า จังหวัดตราดและจันทบุรีมีระดับการเกิดซ้ำสูงกว่าจังหวัดอื่น โดยมีโอกาสเกิดปริมาณน้ำฝนสูงสุดมากที่สุด ซึ่งแสดงให้เห็นว่าทั้งสองจังหวัดมีแนวโน้มในการเกิดอุทกภัยรุนแรงจึงควรให้ความสำคัญในการป้องกันปัญหาการเกิดอุทกภัยในจังหวัดจันทบุรีและตราดมากกว่าจังหวัดอื่น
This study aims to compare models for the generalized extreme value distribution suitable for annual maximum rainfall volume over 30 years from 1993 to 2022 in the eastern region of Thailand. The study area includes the provinces of Chanthaburi, Chonburi, Prachinburi, Rayong, Sa Kaew, and Trat. The investigation compares the generalized extreme values distribution under stationary and non-stationary processes. Eight models are considered, with parameters varying over time. The suitability of a model is assessed based on the goodness-of-fit tests and model selection criteria, considering Akaike's information criteria. The parameter estimation employs the maximum likelihood method. Additionally, the study examines the estimated recurrence levels of rainfall volumes for the return levels of 2, 5, 10, 20, and 100 years, providing a comprehensive analysis of the variability of extreme rainfall events. The results indicate that two provinces, namely Chanthaburi and Prachinburi, are suitable for the Frechet distribution, while Chonburi, Rayong, Sa Kaew, and Trat are suitable for the Gumbel distribution. The models of Chanthaburi and Trat are suitable for the constant parameters. Furthermore, the Chonburi, Prachinburi, Rayong, and Sa Kaew models are suitable for non-constant parameters that vary with time. When considering the return level of rainfall volume, it is found that Trat and Chanthaburi provinces have higher return levels than the others. There is a greater chance of experiencing the highest rainfall, which indicates that both provinces tend to experience severe flood disasters. Therefore, it is crucial to prioritize disaster prevention efforts for flood disasters in the Chanthaburi and Trat provinces more than others.
Keywords
[1] Office of the National Economic and Social Development Council. (2020, May). Eastern Development Plan (Review year 2017-2022). [Online]. (in Thai) Available: https:// www.nesdc.go.th/ewt_dl_link.php?nid=10196& filename=index
[2] P. Busababodhin and A. Keawmun, “Extreme values statistics,” The Journal of KMUTNB, vol. 25, no. 2, pp. 55-65, 2015 (in Thai).
[3] L. Rajaram, Statistical models in Environmental and Life Sciences. Florida : University of South Florida. 2006.
[4] P. Khongthip, M. Khamkong, and P. Bookamana, “Modeling annual extreme precipitation in upper Northern region of Thailand,” Burapha Science Journal, vol. 18, no. 1, pp. 95-104, 2013 (in Thai).
[5] P. Busababodhin, M. Siriboon, and A. Keawmun, “Modeling of extreme precipitation in upper Northeast of Thailand,” Burapha Science Journal, vol. 20, no. 1, pp. 106–117, 2015 (in Thai).
[6] R. Riaman, S. Sukono, S. Supian, and N. Ismail, “Analysis the decision making for agricultural assessment: an application of extreme value analysis,” Decision Science Letters, vol. 10, pp. 351–360, 2021.
[7] H. Tabari, “Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation,” Journal of Hydrology, vol. 593, pp. 1–16, 2021.
[8] C. P. Pandey, V. Ahuja, L. K. Joshi, and H. Nandan, “Extreme value analysis of precipitation and temperature over western Indian Himalayan State, Uttarakhand,” Journal of Earth System Science, vol. 132, no. 48, pp. 1–20, 2023.
[9] E. Gilleland and R. W. Katz, “extRemes 2.0: An extreme value analysis package in R,” Journal of Statistical Software, vol. 72, no. 8, pp. 1–39, 2016.
[10] A.F. Jenkinson, “The frequency distribution of the annual maximum (or minimum) values of meteorological elements,” Quarterly Journal of the Royal Meteorological Society, vol. 81, pp. 158–171, 1955.
[11] J. Galambos, The Asymptotic Theory of Extreme Order Statistics. New York: Wiley, 1978.
[12] J. Beirlant, Y. Goegebeur, J. Segers, and J. L. Teugels, Statistics of Extremes: Theory and Applications. Wiley Series in Probability and Statistics. New York: John Wiley & Sons, 2004.
[13] S. Coles, An Introduction to Statistical Modeling of Extreme Values. London: Springer-Varlag, 2001.
[14] P. Guayjarernpanishk, T. Phupiewpha and P. Busababodhin, “Extreme value analysis: Nonstationary process,” The Journal of KMUTNB, vol. 32, no. 2, pp. 506–515, 2022 (in Thai).
[15] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.
[16] M. A. Stephens, “Introduction to Kolmogorov (1933) On the Empirical Determination of a Distribution,” Breakthroughs in Statistics, pp. 93–105, 1992.
[17] H. Akaike, “Information Theory and an Extension of the Maximum Likelihood Principle,” Proceedings of the 2nd International Symposium on Information Theory, Budapest, 1973, pp. 267–281.
[18] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of Mathematical Statistics, vol. 22, pp. 79–86, 1951.
[19] M. Ahsan-ul-Haq, H. M. Yousof and S. Hashmi, “A new five-parameter Frechet model for extreme value,” Pakistan Journal of Statistics and Operation Research, vol. 13, no. 3, pp. 617– 632, 2017.
DOI: 10.14416/j.kmutnb.2024.10.017
ISSN: 2985-2145