แบบจำลองการจำแนกประเภทศักยภาพเชิงพาณิชย์ของโครงการวิจัยและพัฒนาโดยใช้เทคนิคต้นไม้ตัดสินใจ
Commercialization Classification Model for Research and Development Projects Using Decision Tree Technique
Abstract
งานวิจัยนี้มีวัตถุประสงค์เพื่อสร้างแบบจำลองเพื่อจำแนกประเภทศักยภาพเชิงพาณิชย์สำหรับโครงการวิจัยและพัฒนาของโรงไฟฟ้าแม่เมาะ การไฟฟ้าฝ่ายผลิตแห่งประเทศไทยโดยใช้เทคนิคต้นไม้ตัดสินใจ และนำเสนอแนวทางการบริหารและจัดการโครงการที่เหมาะสมตามศักยภาพเชิงพาณิชย์ที่แตกต่างกัน กลุ่มตัวอย่างที่ใช้ในการสร้างและทดสอบประสิทธิภาพแบบจำลอง ได้แก่ โครงการตัวอย่างที่มีการลงทุนระหว่าง พ.ศ. 2551–2564 จำนวน 56 โครงการ คุณลักษณะของตัวอย่างที่ใช้ในสร้างแบบจำลองประกอบไปด้วย 6 คุณลักษณะ ได้แก่ 1) ความสามารถในการคุ้มครองทรัพย์สินทางปัญญา 2) ประเภทของการนำไปใช้ประโยชน์ 3) ความสามารถในการใช้งานจริงอย่างต่อเนื่อง 4) การต่อยอดจากโครงการเดิม 5) ศักยภาพด้านการดำเนินงานของหน่วยงานวิจัย และ 6) ขนาดของการลงทุน ผลลัพธ์ของแบบจำลอง คือ การแยกศักยภาพเชิงพาณิชย์ของโครงการตัวอย่างออกเป็นสามกลุ่ม ได้แก่ ศักยภาพเชิงพาณิชย์สูง ศักยภาพเชิงพาณิชย์ปานกลาง และศักยภาพด้านอื่น การทดสอบประสิทธิภาพแบบจำลองใช้วิธีการทดสอบแบบไขว้ โดยการแบ่งข้อมูลตัวอย่างเป็น 10 ส่วน จากการคัดเลือกคุณลักษณะได้อย่างเหมาะสมส่งผลให้ได้แบบจำลองต้นไม้ตัดสินใจที่มีค่าประสิทธิภาพสูงโดยมีค่าความแม่นยำเท่ากับ 96.00% ค่าความเที่ยงตรงเฉลี่ยเท่ากับ 95.89% และค่าการเรียกคืนเฉลี่ยเท่ากับ 94.75% นอกจากนั้นงานวิจัยนี้ยังได้นำเสนอแนวทางการบริหารและจัดการโครงการที่เหมาะสมตามศักยภาพเชิงพาณิชย์ที่แตกต่างกันอันจะนำไปสู่การพัฒนาโครงการนวัตกรรมให้เกิดประโยชน์สูงสุดต่อองค์กร
The objective of this research was to create a classification model for categorizing types of commercialization potential in research and development projects conducted at the Mae Moh Power Plant, Electricity Generating Authority of Thailand. This research utilized the decision tree technique to construct the classification model. Furthermore, it provided appropriate management guidelines for different commercial potentials. The sample group used to build and test the model consisted of 56 projects from Mae Moh Power Plant, invested in between the years 2008–2021. The characteristics of the sample projects used to construct the model encompass six attributes: 1) Patentability, 2) Type of Utilization, 3) Continuous real-world application ability, 4) Progression from previous projects, 5) Research institution capability, and 6) Investment size. The model's outcome involved classifying commercialization potential into three groups: High commercialization potential, Moderate commercialization potential, and Other potential. The performance of the model was tested using the 10-fold cross-validation method. With the appropriate attribute selection, the decision tree model achieved high performance with an accuracy of 96.00%, an average precision of 95.89%, and an average recall of 94.75%. Additionally, this research provided suitable management and project handling recommendations based on different commercialization potentials, aiming to maximize benefits for the organization.
Keywords
[1] R. Bandarian,“Evaluation of commercial potential of a new technology at the early stage of development with fuzzy logic,” Journal of Technology Management and Innovation, vol. 2, no. 4, pp. 73–85, 2007.
[2] B. Kasin, “The commercialization research criteria readiness assessment,” Thesis of CITU, Thammasat University, 2018 (in Thai).
[3] Y. Natanon and L. Wimalin, “Selecting the attributes of research and development projects that relate to commercialization potential using Business Intelligence,” in Proceedings IE Network, 2022, pp. 733–739 (in Thai).
[4] J. R. Quinlan, Machine Learning, United States: Springer, 1986, vol. 1, pp. 81–106.
[5] S. B. Akben, “Predicting the success of wart treatment methods using decision tree based fuzzy informative,”Biocybernetics and Biomedical Engineering, vol. 38, no. 4, pp. 819–827, 2018.
[6] S. Mike and T. Arnesh, “The application of decision tree regression to optimize business processes,” in Proceedings ICIEM, 2021, pp. 48–57.
[7] M. Durica, J. Frnda, and L. Svabova, “Decision tree based model of business failure prediction for Polish companies,” Oeconomia Copernicana, vol. 10, no. 3, pp. 453–469, 2019.
[8] L. Katrina, “Decision tree analysis for law practice,” Ohio State Journal on Dispute Resolution, vol. 35, pp. 405–434, 2020.
[9] F. A. Batarseh and R. Yang, “Confusion Matrix,” Data Democracy, United States: Academic Press, 2020, pp. 83–106.
[10] C. Sammut and G. I. Webb, “Confusion Matrix,” Encyclopedia of Machine Learning, United States: Springer, 2011, pp. 209.
[11] Y. Q. Duan and G. M. Cao, “An analysis of the impact of business analytic on innovation,” in Proceedings ECIS, 2015, pp. 40.
DOI: 10.14416/j.kmutnb.2024.10.018
ISSN: 2985-2145