Page Header

การปรับสภาพชีวมวลลิกโนเซลลูโลสด้วยสารละลายดีพยูเทคติคเพื่อกระบวนการกลั่นทางชีวภาพ
Pretreatment of Lignocellulosic Biomass Using Deep Eutectic Solvents for Biorefining Processes

Theerawut Phusantisampan, Nicharee Wisuthiphaet, Nichaphat Kitiborwornkul

Abstract


ลิกโนเซลลูโลสเป็นองค์ประกอบหลักของพืชและมีแหล่งที่มาหลากหลาย โดยสามารถนำไปเข้าสู่กระบวนการกลั่นทางชีวภาพ เพื่อผลิตเป็นเชื้อเพลิงชีวภาพและผลิตภัณฑ์ชีวภาพต่าง ๆ ที่มีมูลค่าสูง โดยหนึ่งในกระบวนการกลั่นทางชีวภาพของชีวมวลลิกโนเซลลูโลสที่มีความสำคัญเป็นอย่างมากคือการปรับสภาพชีวมวลลิกโนเซลลูโลส ซึ่งมีหลายวิธีโดยการเลือกใช้แต่ละวิธีนั้นจะต้องปรับให้เหมาะสมกับชีวมวลที่แตกต่างกัน เป็นขั้นตอนที่ถือว่ามีความท้าทายเป็นอย่างมากเนื่องจากจะเกี่ยวข้องกับการลดต้นทุนและทำให้มีศักยภาพสูงในกระบวนการผลิตเชื้อเพลิงชีวภาพและผลิตภัณฑ์ชีวภาพต่าง ๆ บทความปริทัศน์นี้จึงมีวัตถุประสงค์เพื่อชี้ให้เห็นถึงคุณสมบัติของสารละลายดีพยูเทคติคในการปรับสภาพชีวมวล เป็นความท้าทายใหม่ในการนำชีวมวลมาใช้ประโยชน์ในเชิงพาณิชย์เพื่อการผลิตผลผลิตมูลค่าสูง อีกทั้งสารละลายดีพยูเทคติคยังเป็นตัวทำละลายสีเขียวที่มีประสิทธิภาพสูง เนื่องจากมีต้นทุนต่ำ ความเป็นพิษต่ำความสามารถในการย่อยสลายทางชีวภาพ สามารถรีไซเคิลและนำกลับมาใช้ใหม่ได้ง่าย จึงได้รับการยอมรับจากนักวิจัยทั่วโลกเป็นอย่างมากในการนำมาพัฒนาต่อยอด นอกจากนั้นยังมีการอภิปรายข้อดีและข้อเสียของวิธีการปรับสภาพลิกโนเซลลูโลส ปัจจัยต่าง ๆ ที่เป็นพารามิเตอร์ของกระบวนการ รวมถึงแนวทางการประยุกต์ใช้ และความก้าวหน้าของสารละลายดีพยูเทคติคที่มีศักยภาพต่อไป ดังนั้นก็จะสอดคล้องกับแนวความคิดของหลักโมเดลเศรษฐกิจสู่การพัฒนาที่ยั่งยืนของโลก

Lignocellulose is a primary component of plants and can be obtained from a wide array of sources. It can be used in various biorefinery processes to produce biofuels and various high-value bioproducts. One of the highly significant processes in lignocellulosic biorefinery is the pretreatment of lignocellulose, which can be accomplished through several methods. Each method needs to be tailored to suit different types of biomass. This step is considered highly challenging as it is related to cost reduction and the efficiency in the production of biofuel and bioproducts. The objective of this article is to highlight the characteristics of the deep eutectic solvents (DESs) for the pretreatment of the biomass, which presents a new challenge in utilizing biomass technology for enhanced-value commercial purposes. Additionally, DESs are considered efficient, green and sustainable solvents due to its low cost, low toxicity, biodegradability, along with recyclability and reusability properties. Therefore, it has gained global attention for the future development. Furthermore, the advantages and disadvantages of DES-based lignocellulose pretreatment methods, including various parameters, application guidelines, new trends and future prospects of the DES solvents are taken into account. These aspects are particualarly consistent with the conceptural framework for economic sustainability that promotses sustainable growth at the global level.


Keywords



[1] E. J. Panakkal and M. Sriariyanun, “Valorization of lignocellulosic biomass to value added products,” The Journal of KMUTNB, vol. 33, no. 1, 2023 (in Thai).

[2] V. Phakeenuya and N. Kitiborwornkul “Recent progress in biorefining process for production of biofuels, biochemicals and biomaterials from lignocellulosic biomass,” The Journal of KMUTNB, vol. 34, no. 4, 2024 (in Thai).

[3] T.Ruensodsai and M. Sriariyanun, “Sustainable development and progress of lignocellulose conversion to platform chemicals,” The Journal of KMUTNB, vol. 32, no. 4, 2022 (in Thai).

[4] V. C. Deivayanai, P. R. Yaashikaa, P. Senthil Kumar, and G. Rangasamy, “A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives,” Bioresource Technology, vol.365, no. 9, pp. 1634–50, 2012.

[5] M. Sriariyanun, J. H. Heitz, P. Yasurin, S. Asavasanti, and P. Tantayotai, “Itaconic acid: A promising and sustainable platform chemical?,” Applied Science and Engineering Progress, vol. 12, no. 2, pp. 75–82, 2019.

[6] P. Rachamontree, T. Douzou, K. Cheenkachorn, M. Sriariyanun, and K. Rattanaporn, “Furfural: A sustainable platform chemical and fuel,” Applied Science and Engineering Progress, vol. 13, no. 1, pp. 3–10, 2020.

[7] E. J. Panakkal, N. Kitiborwornkul, M. Sriariyanun, J. Ratanapoompinyo, P. Yasurin, S. Asavasanti, W. Rodiahwati, and P. Tantayotai, “Production of Food Flavouring Agents by Enzymatic Reaction and Microbial Fermentation,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 297–312, 2021.

[8] W. Noo-ngam and T. Silpcharu, “Management strategies for achieving sustainable excellence in the industrial business sector,” The Journal of KMUTNB, vol. 31, no. 1, 2021 (in Thai).

[9] T. Phusantisampan and N. Kitiborwornkul, “Progress in Chemical Pretreatment of Lignocellulose Biomass for Applications in Biorefinery,” The Journal of KMUTNB, vol. 32, no. 4, 2022 (in Thai).

[10] A. Thanapimmetha, S. Tiyanusorn, P. Srinophakun, and M. Saisriyoot, “Reducing sugar production from empty fruit bunches with enzyme Cellic Ctec2®,” The Journal of KMUTNB, vol. 28, no. 2, pp. 285–290, 2018 (in Thai).

[11] D. Jose, N. Kitiborwornkul, M. Sriariyanun, and K. Keerthi, “A review on chemical pretreatment methods of lignocellulosic biomass: recent advances and progress,” Applied Science and Engineering Progress, vol. 15, no. 4, pp. 6210, 2018.

[12] S. Areeya, E. J. Panakkal, M. Sriariyanun, T. Kangsadan, A. Tawai, S. Amornraksa, U. W. Hartley, and P. Yasurin,” A review on chemical pretreatment of lignocellulosic biomass for the production of bioproducts: mechanisms, challenges and applications,” Applied Science and Engineering Progress, vol. 16, no. 3, pp. 6767, 2023.

[13] M. Carlsson, A. Lagerkvist, and F. Morgan- Sagastume, “The effects of substrate pre-treatment on anaerobic digestion systems: A review,” Waste Management, vol.32, no. 19, pp. 1634–1650, 2012.

[14] Y. Sheng, S. S. Lam, Y. Wu, S. Ge, J. Wu, L. Cai, Z. Huang, Q. V. Le, C. Sonne, and C. Xia, “Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin,” Bioresource Technology, vol. 324, pp. 124631, 2021.

[15] D. Jose, A. Tawai, D. Divakaran, D. Bhattacharyya, P. Venkatachalam, P. Tantayotai, and M. Sriariyanun, “Integration of deep eutectic solvent in biorefining process of lignocellulosic biomass valorization,” Bioresource Technology Reports, vol. 21, pp. 101365, 2023.

[16] Z. Xia, J. Li, J. Zhang, X. Zhang, X. Zheng, and J. Zhang, “Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids,” Journal of Bioresources and Bioproducts, vol. 5, no. 2, pp. 79–95, 2020.

[17] M. D. M. Contreras-Gámez, Á. Galán-Martín, N. Seixas, A. M. D. C. Lopes, A. Silvestre, and E.Castro, “Deep eutectic solvents for improved biomass pretreatment: Current status and future prospective towards sustainable processes,” Bioresource Technology, vol. 369, pp. 128396, 2023.

[18] X. Yin, L. Wei, X. Pan, C. Liu, J. Jiang, and K. Wang, “The pretreatment of lignocelluloses with green solvent as biorefinery preprocess: A minor review,” Frontiers of plant science, vol. 12, 2021.

[19] X. H. Yao, D. Y. Zhang, M.H. Duan, Q. Cui , W. J. Xu, M. Luo, C. Y. Li, Y. G. Zu, and Y. J. Fu, “Preparation and determination of phenolic compounds from Pyrola incarnata Fisch. with a green polyols based-deep eutectic solvent” Separation and Purification Technology, vol. 149, pp. 116-123, 2015.

[20] D. Haldar, and M. K. Purkait, “A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements,” Chemosphere, vol. 264, no. 2, pp. 128523, 2021.

[21] P. Khwanchai, and S. Fong-In, “Optimization of concentrated jambulan (Syzygium cumin) juice production process by vacuum evaporation using response surface methodology,” The Journal of KMUTNB, vol. 33, no. 1, pp. 245–256, 2023 (in Thai).

[22] M. Lomjabok, N. Krasaechol, and S. Sai-Ut, “Effect of pepsin and hydrolysis time on antioxidative activity of collagenhydrolysate from chicken feet through response surface methodology,” The Journal of KMUTNB, vol. 31, no. 2, 2021 (in Thai).

[23] N. Ratasukharom, B. Chomtee, C. Wongoutong, and S. Nidsunkid, “A comparison of missing Value Estimation Methods for Response Surface Design,” The Journal of KMUTNB, vol. 32, no. 3, pp. 758–769, 2022 (in Thai).

[24] M. Jablonský, A. Škulcová, L. Kamenská, M. Vrška, and J. Šima, “Deep Eutectic Solvents: Fractionation of Wheat Straw,” BioResources, vol.10, no.4, pp. 8039–8047, 2015.

[25] M. Krishania, V. Kumar, and R. S. Sangwan, “Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw,” Bioresource Technology Reports, vol. 1, pp. 89–93, 2018.

[26] M. P. Gundupalli, S.T. A. Sahithi, E. P.Jayex, S. Asavasanti, P.Yasurin, Y. S. Cheng, and M. Sriariyanun, “Combined effect of hot water and deep eutectic solvent (DES) pretreatment on a lignocellulosic biomass mixture for improved saccharification efficiency,” Bioresource Technology Reports, vol.17, pp. 100986, 2022.

[27] M. Li, S. Cao, X. Meng, M. Studer, C. E. Wyman, A. J. Ragauskas, and Y. Pu, “The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar,” Biotechnology for Biofuels, vol. 237, 2017.

[28] B. C. Saha, and M. A. Cotta, “Comparison of pretreatment strategies for enzymatic saccharification and fermentation of barley straw to ethanol,” New Biotechnology, vol. 27, no. 1, pp. 10–16, 2010.

[29] Q. Ji, X. Yu, P. Wu, A. El-Gasim. Yagoub, L. Chen, A. T. Mustapha, and C. Zhou, “Pretreatment of sugarcane bagasse with deep eutectic solvents affect the structure and morphology of lignin,” Industrial Crops and Products, vol. 173, pp. 114108, 2021.

[30] A. K. Kumar, B.S. Parikh, E. Shah, L. Z. Liu, and M. A. Cotta, “Cellulosic ethanol production from green solvent-pretreated rice straw,” Biocatalysis and Agricultural Biotechnology, vol. 7, pp. 14–23, 2016.

[31] J. Li, X. Guo, R. Wang, Z. Geng, J. Jia, S. Pang, Y. Du, S. Jia, and J. Cui, “Ultrasonic assisted extraction of anthocyanins from rose flower petal in DES system and enzymatic acylation,” LWT, vol. 180, pp. 114693, 2023.

[32] Y. Zhang, L. He, Q. Li, Ju. Cheng, Y. Wang, J. Zhao, S. Yuan, Y. Chen, and R. Shi, “Optimization of ultrasonic-assisted deep eutectic solvent for the extraction of polysaccharides from Indocalamus tessellatus leaves and their biological studies,” Sustainable Chemistry and Pharmacy, vol. 30, pp. 100855, 2022.

[33] O. A. Olalerea and C. Y. Ganb, “Extractability of defatted wheat germ protein and their functionalities in a deep eutectic solvent (DES)-Microwave extraction approach compared to conventional processing,” Sustainable Chemistry and Pharmacy, vol. 32, pp. 101002, 2023.

[34] L. H. Xu, C. Y. Ma, C. Zhang, J. Liu, X. P. Peng, S. Q. Yao, D. Y.Min, T. Q. Yuan, and J. L. Wen, “Ultrafast fractionationof wild-type and CSE down-regulated poplars by microwave-assisted deep eutectic solvents (DES) for cellulose bioconversion enhancement and lignin nanoparticles fabrication,” Industrial Crops and Products, vol. 176, pp. 100855, 2022.

[35] A. Satlewal, R. Agrawal, S. Bhagia, and J. Sangoro, “Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities,” Biotechnology Advances, vol. 36, no. 8, 2018.

[36] X. Y. Yang, C. Huang, H. J. Guo, L. Xiong, Y. Y. Li, H. R. Zhang, and X. D. Chen, “Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus,” Journal of Applied Microbiology, vol. 115, no. 4, pp. 995–1002, 2013.

[37] A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, “Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids,” Journal of the American Chemical Society, vol. 126, no. 29, pp. 9142–9147, 2004.

[38] K. M. Lee, J. C. Quek, W. Y. Tey, S. Lim , H. S. Kang, L. K. Quen, W. A. W. Mahmood, S. I. S. Jamaludin, K. H. Teng, and K. S. Khoo, “Biomass valorization by integrating ultrasonication and deep eutectic solvents: Delignification, cellulose digestibility and solvent reuse,” Biochemical Engineering Journal, vol. 187, pp. 108587, 2022.

[39] A. Forouhar, N. Hamdami, G. Djelveh, C. Gardarin, G. Pierre, A. V. Ursu, and P. Michaud, “The effect of ultrasound pretreatment on pectin extraction from watermelon rind using microwave-assisted extraction,” Applied Sciences, vol. 13, no. 9, pp. 5558, 2023.

[40] Q. Ma, Q. Ji, L. Chen, Z. Zhu, S. Tu, C. E. Okonkwo, P. Out, and C. Zhou, “Multimode ultrasound and ternary deep eutectic solvent sequential pretreatments enhanced the enzymatic saccharification of corncob biomass,” Industrial Crops and Products, vol. 188, pp. 115574, 2022.

[41] D. Sawhney, S. Vaid, R. Bangotra, S. Sharma, H. C. Dutt, N. Kapoor, R. Mahajan, and B. K. Bajaj, “Proficient bioconversion of rice straw biomass to bioethanol using a novel combinatorial pretreatment approach based on deep eutectic solvent, microwave irradiation and laccase,” Bioresource Technology, vol. 375, pp. 128791, 2023.

[42] L. L. Sun, Z. Yue, S. C. Sun, Y. Li, X. F. Cao, and S. N. Sun, “Microwave-assisted choline chloride/1,2-propanediol/methyl isobutyl ketone biphasic system for one-pot fractionation and valorization of Eucalyptus biomass,” Bioresource Technology, vol. 369, pp. 128392, 2023.

[43] B. Shen, S.Hou, Y. Jia, C. Yang, Y. Su, Z. Ling, C. Huang, C. Lai, and Q. Yong, “Synergistic effects of hydrothermal and deep eutectic solvent pretreatment on co-production of xylo-oligosaccharides and enzymatic hydrolysis of poplar,” Bioresource Technology, vol. 341, pp. 125787, 2021.

[44] R. Wang, K. Wan, M. Zhou, J. Xu, and J. Jiang, “Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment,” Bioresource Technology, vol. 328, pp. 124873, 2021.

Full Text: PDF

DOI: 10.14416/j.kmutnb.2024.07.014

ISSN: 2985-2145