การวิเคราะห์การเสียรูปมากของโครงสร้างเปลือกบางรูปทรงกลมแบบหลายชิ้นส่วนรับแรงดันภายในร่วมกับเทคนิคตัวคูณลากรองจ์
Large Displacement Analysis of Internally Pressurized Multi-Segmented Spherical Shells with Lagrange’s Multiplier Technique
Abstract
บทความนี้นำเสนอการวิเคราะห์การเสียรูปมากของโครงสร้างเปลือกบางรูปทรงกลมแบบหลายชิ้นส่วนรับแรงดันภายในร่วมกับเทคนิคตัวคูณลากรองจ์ การสร้างแบบจำลองโครงสร้างเปลือกบางใช้ทฤษฎีเรขาคณิตเชิงอนุพันธ์ในการคำนวณหารูปแบบพื้นฐานของพื้นผิวอันดับที่หนึ่งและสอง ฟังก์ชันพลังงานของระบบโครงสร้างเปลือกบางรูปทรงกลมแบบหลายชิ้นส่วนสามารถเขียนได้โดยใช้สมการแปรผันและจัดในรูปแบบที่เหมาะสมสำหรับการคำนวณแบบไม่เป็นเชิงเส้น ผลลัพธ์เชิงตัวเลขของค่าการเสียรูปมากของโครงสร้างเปลือกบางรูปทรงกลมแบบหลายชิ้นส่วนสามารถคำนวณได้ โดยใช้วิธีไฟไนต์เอลิเมนต์แบบไม่เป็นเชิงเส้นสำหรับชิ้นส่วนคานแบบโพลิโนเมียลอันดับห้าโดยทำการแบ่งเป็นชิ้นส่วนย่อย ๆ ในระบบพิกัดเชิงขั้วแบบทรงกลมร่วมกับกระบวนการทำซ้ำ เนื่องจากความแตกต่างของค่าความโค้งหลักของโครงสร้างเปลือกบางรูปทรงกลมแบบหลายชิ้นส่วน ดังนั้นในการศึกษาครั้งนี้จึงใช้เทคนิคตัวคูณแบบลากรองจ์ในการป้องกันปัญหาความไม่ต่อเนื่องที่เกิดขึ้นผลการศึกษาพบว่า ค่าการเสียรูปที่ได้จากงานวิจัยในครั้งนี้มีความถูกต้อง เมื่อเปรียบเทียบกับผลที่ได้จากโปรแกรมไฟไนต์เอลิเมนต์สำเร็จรูป ผลการวิเคราะห์เชิงตัวเลขที่แสดงค่าการเสียรูปมากของโครงสร้างเปลือกบางรูปทรงกลมแบบหลายชิ้นส่วนภายใต้การแปรเปลี่ยนแรงดันภายใน อัตราส่วนความยาวรัศมี มุมรองรับส่วนโค้ง และความหนาของโครงสร้างเปลือกบางได้ถูกนำเสนอในบทความนี้ ผลการศึกษาพบว่า ค่าการเสียรูปมากของโครงสร้างเปลือกบางรูปทรงกลมแบบหลายชิ้นส่วนรับแรงดันภายในเปลี่ยนแปลงอย่างรวดเร็วที่ตำแหน่งจุดเชื่อมต่อของโครงสร้าง แบบจำลองสำหรับการวิเคราะห์ที่ได้จากงานวิจัยนี้สามารถนำไปประยุกต์ใช้ได้กับงานโครงสร้างเปลือกบางประเภทอื่น ๆ ที่มีรูปแบบซับซ้อน และสามารถคำนวณหาอัตราส่วนพื้นที่ผิวต่อความจุของโครงสร้างที่มีประสิทธิภาพสูงสุดได้
This paper presents a large displacement analysis of internally pressurized multi-segmented spherical shells with Lagrange’s multiplier technique. Multi-segmented spherical shells are modeled using differential geometry to compute the first and second surface fundamental forms. The energy functional of multi-segmented spherical shells can be derived from the variational formulation, and it is written in the appropriate forms for nonlinear analysis. The numerical results in terms of large displacement of the multi-segmented spherical shells can be obtained by nonlinear finite element method via the fifth-order polynomial shape function described in spherical polar coordinates, and are solved by the iterative procedure. Since the multi-segmented spherical shells have two different radii of curvatures, the Lagrange’s multiplier technique is required in the present formulation to handle the discontinuity effect. The numerical results indicate that the deformed configuration of the present formulation is accurate when compared to those from the commercial finite element software. The effects of the internal pressure, radius ratio, support angle, and thickness on the large displacement responses of the multi-segmented spherical shells are presented in this paper. Finally, the results indicate that all displacement responses of the internally pressurized multi-segmented spherical shells change rapidly near the shell edge junctions. The analytical models obtained in this study can be applied to other shell structures with complex patterns. Additionally the most efficient structure's surface-area-to-volume ratio can be defined.
Keywords
[1] J. Blachut, “Minimum weight of internally pressurised domes subject to plastic load failure,” Thin-Walled Structures, vol. 27, no. 2, pp. 127–146, 1997.
[2] E. Hamed, M. A. Bradford, and R. I. Gilbert, “Nonlinear long-term behaviour of spherical shallow thin-walled concrete shells of revolution,” International Journal of Solids and Structures, vol. 47, no. 2, pp. 204–215, 2010.
[3] W. Jiammeepreecha, S. Chucheepsakul, and T. Huang, “Nonlinear static analysis of deep water axisymmetric spherical half drop shell,” KMUTT Research and Development Journal, vol. 37, no. 2, pp. 239–255, 2014 (in Thai).
[4] W. Jiammeepreecha, S. Chucheepsakul, and T. Huang, “Nonlinear static analysis of an axisymmetric shell storage container in spherical polar coordinates with constraint volume,” Engineering Structures, vol. 68, pp. 111–120, 2014.
[5] W. Jiammeepreecha, S. Chucheepsakul, and T. Huang, “Parametric study of an equatorially anchored deepwater fluid-filled periodic symmetric shell with constraint volume,” Journal of Engineering Mechanics, vol. 141, no. 8, pp. 04015019-1– 04015019-13, 2015.
[6] A. Zingoni, “Liquid-containment shells of revolution: A review of recent studies on strength, stability and dynamics,” Thin-Walled Structures, vol. 87, pp. 102–114, 2015.
[7] W. Jiammeepreecha, and S. Chucheepsakul, “Nonlinear axisymmetric free vibration analysis of liquid-filled spherical shell with volume constraint,” Journal of Vibration and Acoustics, vol. 139, no. 5, pp. 051016-1–051016-13, 2017.
[8] W. Jiammeepreecha, “Effects of internal pressure and constraint volume on vibration of spherical membrane,” RMUTI Journal Science and Technology, vol. 10, no. 2, pp. 40–60, 2017.
[9] W. Jiammeepreecha, “Axisymmetric free vibration of fluid-filled membrane,” Engineering Journal Chiang Mai University, vol. 25, no. 3, pp. 66–78, 2018 (in Thai).
[10] K. Chaidachatorn, W. Jiammeepreecha, and S. Jamnam, “Axisymmetric and antisymmetric free vibrations of inflated toroidal membrane,” The Journal of KMUTNB, vol. 31, no. 4, pp. 661–674, 2021 (in Thai).
[11] A. Y. Evkin and O. V. Lykhachova, “Design buckling pressure for thin spherical shells: Development and validation,” International Journal of Solids and Structures, vol. 156–157, pp. 61–72, 2019.
[12] A. Zingoni, “Stresses and deformations in egg-shaped sludge digestors: Membrane effects,” Engineering Structures, vol. 23, no. 11, pp. 1365–1372, 2001.
[13] A. Zingoni, “Stresses and deformations in egg-shaped sludge digestors: Discontinuity effects,” Engineering Structures, vol. 23, no. 11, pp. 1373–1382, 2001.
[14] T. Hong and J. G. Teng, “Imperfection sensitivity and postbuckling analysis of elastic shells of revolution,” Thin-Walled Structures, vol. 46, no. 12, pp. 1338–1350, 2008.
[15] P. Jasion and K. Magnucki, “Elastic buckling of clothoidal–spherical shells under external pressure – theoretical study,” Thin-Walled Structures, vol. 86, pp. 18–23, 2015.
[16] A. Zingoni and N. Enoma, “Strength and stability of spherical-conical shell assemblies under external hydrostatic pressure,” Thin-Walled Structures, vol. 146, pp. 106472-1–106472-11, 2020.
[17] H. L. Langhaar, Foundations of Practical Shell Analysis, Illinois: Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, 1964.
[18] W. Jiammeepreecha, and S. Chucheepsakul, “Nonlinear free vibration of internally pressurized axisymmetric spherical shell,” KMUTT Research and Development Journal, vol. 40, no. 4, pp. 509–532, 2017 (in Thai).
[19] H. L. Langhaar, Energy Methods in Applied Mechanics, New York : John Wiley & Sons, Inc., 1962.
[20] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, New York: John Wiley & Sons, Inc., 2002.
[21] W. Jiammeepreecha, K. Chaidachatorn, and S. Chucheepsakul, “Nonlinear static response of an underwater elastic toroidal storage container,” International Journal of Solids and Structures, vol. 228, pp. 111134-1–111134-12, 2021.
[22] G. T. Mase and G. E. Mase, Continuum Mechanics for Engineers, Florida: CRC Press, 1999.
[23] ABAQUS Analysis User's Manual, Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, Rhode Island, 2017.
DOI: 10.14416/j.kmutnb.2024.08.010
ISSN: 2985-2145