Page Header

Recent Progress in Biorefining Process for Production of Biofuels, Biochemicals and Biomaterials from Lignocellulosic Biomass

Vanarat Phakeenuya, Nichaphat Kitiborwornkul

Abstract


กระบวนการกลั่นทางชีวภาพเป็นกระบวนการที่นำวัสดุชีวมวลลิกโนเซลลูโลสมาผลิตเป็นผลิตภัณฑ์ที่มีมูลค่าเพิ่ม ได้แก่ พลังงานชีวภาพ (เช่น เอทานอล มีเทน บิวทานอล) พลาสติกชีวภาพ สารเคมีแพลทฟอร์ม สารชีวเคมี เป็นต้น โดยวัสดุชีวมวลลิกโนเซลลูโลสได้มาจากกิจกรรมทางการเกษตร หรือโรงงานแปรรูปสินค้าเกษตร เช่น ฟางข้าว ชานอ้อย กากกาแฟ หญ้า ซังข้าวโพด เป็นต้น ซึ่งมักจะถูกนำไปเผาทำลายหลังฤดูกาลเก็บเกี่ยวก่อให้เกิดเป็นมลภาวะทางสิ่งแวดล้อม เนื่องจากลักษณะที่สำคัญของชีวมวลลิกโนเซลลูโลสประกอบไปด้วย เซลลูโลส เฮมิเซลลูโลส และลิกนิน ซึ่งชีวมวลสามารถเปลี่ยนไปเป็นน้ำตาลที่ใช้เป็นวัตถุดิบในกระบวนการหมักด้วยจุลินทรีย์ จึงทำให้ชีวมวลชนิดนี้มีศักยภาพสูงในการนำมาใช้เป็นวัตถุดิบในกระบวนการกลั่นทางชีวภาพ นอกจากนี้ยังถือว่าวัสดุชีวมวลลิกโนเซลลูโลสเป็นวัตถุดิบที่เป็นมิตรต่อสิ่งแวดล้อมและยังช่วยลดปัญหาปริมาณขยะที่เกิดจากของเหลือทิ้งทางการเกษตร บทความนี้จึงรวบรวมแนวทางการพัฒนากระบวนการกลั่นทางชีวภาพของชีวมวลลิกโนเซลลูโลสเพื่อผลิตเป็นผลิตภัณฑ์หลักสามประเภท ได้แก่ พลังงานชีวภาพ พลาสติกชีวภาพ และสารเคมีแพลตฟอร์ม ซึ่งเป็นผลจากการพัฒนางานวิจัยและรวมไปถึงการนำเสนอข้อจำกัดของกระบวนการและแนวทางในการพัฒนาในเพื่อการผลิตในระดับอุตสาหกรรมในอนาคต

Biorefinery is the process by which lignocellulosic biomass is converted to value-added products such as bioenergy (ethanol, methane, butanol), bioplastics, platform chemicals and biochemicals. The lignocellulosic biomass, such as rice straw, bagasse, coffee grounds, grass, corn cobs, is obtained from agricultural activities and agricultural processing plants. It is often burned after the harvesting season, causing environmental pollution. Compositions of lignocellulose biomass include cellulose, hemicellulose and lignin, which are converted to sugars that are used as raw materials in microbial fermentation processes. Therefore, this biomass has high potential to be used as raw material in the biorefinery process. In addition, lignocellulosic biomass is considered to be an environmentally friendly raw material that helps to reduce the amount of agricultural waste. This review describes the guidelines for the development of the biorefinery process of lignocellulosic biomass to produce three main types of products, including bioenergy, bioplastics and platform chemicals. The process limitations and proposed solutions are described for further applications in industrial productions.


Keywords



[1] T. Ruensodsai and M. Sriariyanun, “Sustainable development and progress of lignocellulose conversion to platform chemicals,” The Journal of KMUTNB, vol. 32, no. 4, pp. 815–818, 2022 (in Thai).

[2] M. Sriariyanun and K. Kitsubthawee, “Trends in Lignocellulosic Biorefinery for production of value-added biochemicals,” Applied Science and Engineering Progress, vol. 13, no. 4, pp. 283–284, 2020 (in Thai).

[3] S. Soponronnarit, “Thailand’s energy situation and strategic guidance for reducing greenhouse gas emission,” The Journal of KMUTNB, vol. 29, no. 3, pp. 353–354, 2019 (in Thai).

[4] A. Thanapimmetha, S. Tiyanusorn, P. Srinophakun, M. Saisriyoot, “Reducing sugar production from empty fruit bunches with enzyme Cellic Ctec2®,” The Journal of KMUTNB, vol. 28, no. 2, pp. 285–290, 2018 (in Thai).

[5] Y-S. Cheng, P. Mutrakulcharoen, S. Chuetor, K. Cheenkachorn, P. Tantayotai, E. J. Panakkal, and M. Sriariyanun, “Recent situation and progress in biorefining process of lignocellulosic biomass: toward green economy,” Applied Science and Engineering Progress, vol. 13, no. 4, pp. 299–311, 2020 (in Thai).

[6] D. Yuaikwarmdee, S. Wantanakomol, and T. Silpcharu, “Adaption strategy for automotive part manufacturing industry to support Thailand 4.0,” The Journal of KMUTNB, vol. 33, no. 2, 2023 (in Thai).

[7] T. Phusantisampan and N. Kitiborwornkul, “Progress in chemical pretreatment of lignocellulose biomass for applications in biorefinery,” The Journal of KMUTNB, vol. 32, no. 4, pp. 1087–1101, 2022 (in Thai).

[8] M. Lomjabok, N. Krasaechol, and S. Sai-Ut, “Effect of pepsin and hydrolysis time on antioxidative activity of collagen hydrolysate from chicken feet through response surface methodology,” The Journal of KMUTNB, vol. 31, no. 2, pp. 367–377, 2021 (in Thai).

[9] P. Khwanchai and S. Fong-In, “Optimization of concentrated Jambulan (Syzygium cumin) juice production process by vacuum evaporation using response surface methodology,” The Journal of KMUTNB, vol. 33, no. 1, pp. 245–256 2023 (in Thai).

[10] A. Chanpirak, P. Dumnin, and A. Hongpuay, “Optimization of oil extraction from spent coffee grounds (coffea canephoravar. robusta /coffea arabica) by hexane using response surface methodology,” The Journal of KMUTNB, vol. 28, no. 4, pp. 799-811, 2018 (in Thai).

[11] N. Ratasukharom, B. Chomtee, C. Wongoutong, and S. Nidsunkid, “A comparison of missing value estimation methods for response surface design,” The Journal of KMUTNB, vol. 32, no. 3, pp. 758–769, 2022 (in Thai).

[12] C. Homkhiew, W. Boonchouytan, and S. Rawangwong, “Optimal manufacturing parameters of rubberwood flour/high density polyethylene composites using Box–Behnken Design,” The Journal of KMUTNB, vol. 27, no. 2, pp. 315–328, 2017 (in Thai).

[13] M. Galbe and O. Wallberg, “Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials,” Biotechnology for Biofuels, vol. 12, pp. 294, 2019.

[14] D. Jose, N. Kitiborwornkul, and M. Sriariyanun, “A review on chemical pretreatment methods of lignocellulosic biomass: recent advances and progress,” Applied Science and Engineering Progress, vol.15, no. 4, Article no. 6210, 2022.

[15] D. A. Esquivel-Hernández, J. S. García-Pérez, I. Y. López-Pacheco, H. M. N. Iqbal, and R. Parra-Saldívar, “Resource recovery of lignocellulosic biomass waste into lactic acid - trends to sustain cleaner production,” Journal of Environmental Management, vol. 301, Article no. 113925, 2022.

[16] Y. A. Osman and L. O. Ingram, “Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4,” Journal of Bacteriology, vol. 164, no. 1, pp. 173–180, 1985.

[17] C. Li, X. Lin, X. Ling, S. Li, and H. Fang, “Consolidated bioprocessing of lignocellulose for production of glucaric acid by an artificial microbial consortium,” Biotechnol Biofuels, vol. 14, no. 1, pp. 110, 2021.

[18] I. Loaces, S. Schein, and F. Noya, “Ethanol production by Escherichia coli from Arundo donax biomass under SSF, SHF or CBP process configurations and in situ production of a multifunctional glucanase and xylanase,” Bioresource Technology, vol. 224, pp. 307–313, 2017.

[19] B. S. Dien, M. A. Cotta, and T. W. Jeffries, “Bacteria engineered for fuel ethanol production: Current status,” Applied Microbiology and Biotechnology, vol. 63, no. 3, pp. 258–266, 2003.

[20] F. Battista, G. Mancini, B. Ruggeri, and D. Fino, “Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products,” Renewable Energy, vol. 88, pp. 401–407, 2016.

[21] R. E. Martínez-Herrera, M. E. Alemán-Huerta, P. Flores-Rodríguez, V. Almaguer-Cantú, R. Valencia-Vázquez, W. Rosas-Flores, H. Medrano-Roldán, L. A. Ochoa-Martínez, and O.M. Rutiaga-Quiñones, “Utilization of Agave durangensis leaves by Bacillus cereus 4N for polyhydroxybutyrate (PHB) biosynthesis,” International Journal of Biological Macromolecules, vol.1, no. 175, pp. 199–208, 2021.

[22] A. G. Sandström, A. Muñoz de Las Heras, D. Portugal-Nunes, and M. F. Gorwa-Grauslund, “Engineering of Saccharomyces cerevisiae for the production of poly-3-d-hydroxybutyrate from xylose,” AMB Express, vol. 25, no. 1, 2015.

[23] F. Abdelmalek, A. Steinbüchel, and M. Rofeal, “The hyperproduction of polyhydroxybutyrate using Bacillus mycoides ICRI89 through enzymatic hydrolysis of affordable cardboard,” Polymers (Basel), vol.14, no. 14, pp. 2810, 2022.

[24] R. G. aratale, S. K. Cho, A. A. Kadam, G. S. Ghodake, M. Kumar, R. N. Bharagava, S. Varjani, S. Nair, D. S. Kim, H. S. Shin, and G. D. Saratale, “Developing microbial co-culture system for enhanced Polyhydroxyalkanoates (PHA) production using acid pretreated lignocellulosic biomass,” Polymers (Basel), vol. 14, no. 4, pp. 726, 2022.

[25] A. Devi, S. Bajar, H. Kour, R. Kothari, D. Pant, and A. Singh, “Lignocellulosic biomass valorization for bioethanol production: A circular bioeconomy approach,” Bioenergy, vol. 7, pp. 1–22, 2022.

[26] S. Kang and J. Yu, “Effect of methanol on formation of levulinates from cellulosic biomass,” Industrial & Engineering Chemistry Research, vol. 54, no. 46, pp. 11552–9, 2015.

[27] A. M. Borrero-López, C. Valencia, and J. M. Franco, “Lignocellulosic materials for the production of biofuels, biochemicals and biomaterials and applications of lignocellulose-based polyurethanes a review,” Polymers, vol. 14, pp. 881, 2022.

[28] C. Piasai, N. Boontian, T. Phorndon, and M. Padri, “Acetic acid as a carbon source from fermentation of biogas excess sludge for the removal of nutrients in enhanced biological phosphorus removal processes,” The Journal of KMUTNB, vol. 32, no. 1, pp. 118–133, 2022 (in Thai).

[29] T. Phorndon, N. Boontian, C. Piasai, and M. Padri, “Enhanced methane production from cassava pulp by using alkaline hydrolysis and heat with scraps iron,” The Journal of KMUTNB, vol.31, no. 2, pp. 216–230, 2021 (in Thai).

[30] P. Intanoo and P. Ketrom, “The development of biomass fuel from peanut shell,” The Journal of KMUTNB, vol. 28, no. 4, pp. 837–847, 2018 (in Thai).

[31] C. Nualsri, S. Dangwongjaroenporn, and C. Sreela-or, “Effect of biochar from banana peel on the stability of methane production from food waste at different organic loading rates,” The Journal of KMUTNB, vol. 31, no. 4, pp. 770–780, 2021 (in Thai).

[32] N. Sanannam, A. Pimarnthisakorn, A. Sukvalakunchai, and P. Ngaotrakanwiwat, “Cu/CuO doped TiO2 photoanode for photoelectrochemical water splitting,” The Journal of KMUTNB, vol. 32, no. 3, pp. 636–646, 2022 (in Thai).

[33] P. Keeratiwintakorn, P. Narataruksa, and C. Chuayprasadpattana, “A control system for a pilot-scale modified packed bed reactor for a reforming process,” The Journal of KMUTNB, vol. 24, no. 2, 2014 (in Thai).

[34] K. H. Miga, S. Koren, A. Rhie, M. R. Vollger, A. Gershman, A. Bzikadze, S. Brooks, E. Howe, D. Porubsky, G. A. Logsdon, and V. A. Schneider, “Telomere-to-telomere assembly of a complete human X chromosome,” Nature, vol. 858, no. 7823, pp. 79–84, 2020.

[35] C. Chuensangjun, N. Kongklom, and M. Sriariyanun, “Bioplastic: from research to innovation and implementation against global warming,” The Journal of KMUTNB, vol. 30, no.2, pp. 183–185, 2020 (in Thai).

[36] P. Eiamsa-ard, “Polyhydroxyalkanoate: Bioplastic from bacteria,” The Journal of KMUTNB, vol. 27, no. 1, pp. 147–158, 2017 (in Thai).

[37] P. Eiamsa-ard, “Isolation and Identification of polyhydroxyalkanoate (PHA) producing bacteria from food industrial wastewater by using fluorometric screening,” The Journal of KMUTNB, vol. 27, no. 4, pp. 771–781, 2017 (in Thai).

[38] S. M. Saleh, A. M. Soliman, M. A. Sharaf, V. Kale, and B. Gadgil, “Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still,” Journal of Environmental Chemical Engineering, vol. 5, no. 1, pp. 1219–26, 2017.

[39] K. Shyamala, H. C. Girish, and S. Murgod, “Risk of tumor cell seeding through biopsy and aspiration cytology,” Journal of International Society of Preventive & Community Dentistry, vol. 4, no. 1, pp. 5–11, 2014.

[40] E. M. Elmowafy, M. Tiboni, and M. E. Soliman, “Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/ poly (lactic-co-glycolic acid) micro and nanoparticles,” Journal of Pharmaceutical Investigation, vol. 49, no. 4, pp. 347–80, 2019.

[41] A. R. de Matos Costa, A. Crocitti, L. H. de Carvalho, S. C. Carroccio, P. Cerruti, and G. Santagata, “Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends,” Polymers, vol. 12, no. 10, pp. 2317, 2020.

[42] N. Srirachya, “Shape stability enhancement of palm fiber hydrogels with natural rubber,” The Journal of KMUTNB, vol. 32, no. 1, pp. 143–152, 2022 (in Thai).

[43] P. Rachamontree, T. Douzou, K. Cheenkachorn, M. Sriariyanun, and K. Rattanaporn, “Furfural: A sustainable platform chemical and fuel,” Applied Science and Engineering Progress, vol. 13, no. 1, pp. 3–10, 2019.

[44] M. Sriariyanun, J. Hendrik Heitz, P. Yasurin, S. Asavasanti, and P. Tantayotai, “Itaconic acid: A promising and sustainable platform chemical?,” Applied Science and Engineering Progress, vol. 12, no. 2, 2019.

[45] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, MR. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, and N. Usami, “A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%,” Nature Nanotechnology, vol. 13, no. 2, pp. 102–6, 2018.

[46] G. P. Perez, A. Mukherjee, and M. J. Dumont, “Insights into HMF catalysis,” Journal of Industrial and Engineering Chemistry, vol. 25, no. 70, pp. 1–35, 2019.

[47] B. Ghosal, A. Tolamatti, K. K. Singh, K. K. Yadav, R. C. Rannot, A. K. Tickoo, P. Chandra, A. Goyal, N. Kumar, P. Marandi, and N. K. Agarwal, “Multiwavelength study of the radio galaxy NGC 1275 with TACTIC, fermi and swift during December,” New Astronomy, vol. 1, no. 80, pp. 101402, 2020.

[48] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic image segmentation with deep convolutional nets and fully connected crfs,” arXiv preprint arXiv, 2014.

[49] M. Luo, L. Guo, M. Yu, W. Jiang, and H. Wang, “The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public–A systematic review and meta-analysis,” Psychiatry Research, vol. 1, no. 291, pp. 113190, 2020.

[50] Y. Yan, Y. Mao, and B. Li, “Second: sparsely embedded convolutional detection,” Sensors, vol. 18, no. 10, pp. 3337, 2018.

[51] A. Wu, C. Su, D. Wang, Y. Peng, M. Liu, S. Hua, T. Li, GF. Gao, H. Tang, J. Chen, and X. Liu, “Sequential reassortments underlie diverse influenza H7N9 genotypes in China,” Cell Host & Microbe, vol. 14, no. 4, pp. 446–52, 2013.

[52] R. Hodge, J. Brasington, and K. Richards, “Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics,” Sedimentology, vol. 56, no. 7, pp. 2024–43, 2009.

[53] A. Thakur, P. S. Panesar, and M. S. Saini, “Parametric optimization of lactic acid production by immobilized Lactobacillus casei using Box-Behnken Design,” Period Polytech Chem Eng, vol. 62, no. 3, pp. 274–285, 2018.

[54] J. Zhang, M. Terrones, C. R. Park, R. Mukherjee, M. Monthioux, N. Koratkar, Y. S. Kim, R. Hurt, E. Frackowiak, T. Enoki, and Y. Chen, “Carbon science in 2016: Status, challenges and perspectives,” Carbon, vol. 98, no. 70, pp. 708–32, 2016.

[55] B. E. Teleky and D. C. Vodnar, “Biomass-derived production of itaconic acid as a building block in specialty polymers,” Polymers, vol. 11, no. 6, pp. 1035, 2019.

[56] S. Jirasatid, “Effect of riceberry bran on product development of functional drinkable goat milk yogurt,” The Journal of KMUTNB, vol. 31, no. 2, pp. 356–366, 2021 (in Thai).

[57] T. O. Suzuki, N. Miyata, H. Horitsu, K. Kawai, K. Takamizawa, Y. Tai, and M. Okazaki, “NAD (P) H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: A Cr (V) intermediate is formed during the reduction of Cr (VI) to Cr (III),” Journal of Bacteriology, vol. 174, no. 16, pp. 5340–5, 1992.

Full Text: PDF

DOI: 10.14416/j.kmutnb.2023.03.002

ISSN: 2985-2145