Preparation and Characterization of Antibacterial Hydrogels from Poly(vinyl alcohol)/Aloe vera/Chitosan for Burn Wound Dressing Application
Abstract
ไคโตซานเป็นพอลิแซ็กคาไรด์ธรรมชาติที่ได้จากไคติน ไม่มีความเป็นพิษ เข้ากันได้ทางชีวภาพ ย่อยสลายได้ทางชีวภาพ มีสมบัติในการห้ามเลือด และยับยั้งเชื้อแบคทีเรีย ทำให้สามารถประยุกต์ใช้งานด้านชีวการแพทย์ได้หลากหลาย ในงานวิจัยนี้ได้เตรียมไฮโดรเจลของพอลิไวนิลแอลกอฮอล์ ว่านหางจระเข้ และไคโตซาน โดยการผสมสารละลายทั้งหมดเข้าด้วยกันจากนั้นเชื่อมขวางด้วยกลูตารัลดีไฮด์ เพื่อประยุกต์ใช้เป็นวัสดุปิดแผลไฟไหม้ โดยได้ศึกษาปริมาณของไคโตซาน (1% 2% และ 3%) และกลูตารัลดีไฮด์ (2.5% 5% และ 10%) ที่ส่งผลต่อสมบัติทางกายภาพ สมบัติเชิงกล และฤทธิ์ต้านแบคทีเรียของไฮโดรเจลที่เตรียมได้ จากนั้นวิเคราะห์โครงสร้างของไฮโดรเจลด้วยเทคนิคฟูเรียร์ทรานฟอร์มอินฟราเรดสเปกโทรสโกปี ผลการวิจัยพบว่า สัดส่วนการบวมตัว อัตราการซึมผ่านไอน้ำ การยุบตัว และความพรุนของไฮโดรเจลเพิ่มขึ้นตามปริมาณของไคโตซานที่เพิ่มขึ้น แต่ลดลงเมื่อปริมาณของกลูตารัลดีไฮด์เพิ่มขึ้น นอกจากนี้การเพิ่มปริมาณของไคโตซาน และกลูตารัลดีไฮด์ยังส่งผลให้ความต้านทานแรงดึงมีแนวโน้มเพิ่มขึ้นเล็กน้อย ในขณะที่ความยืดสูงสุด ณ จุดขาดมีแนวโน้มลดลง การประเมินสมบัติการยับยั้งเชื้อแบคทีเรีย แสดงให้เห็นว่าไฮโดรเจลสามารถยับยั้งได้ทั้งเชื้อแบคทีเรียแกรมบวก (S. aureus) และแบคทีเรียแกรมลบ (E. coli) ผลการวิจัยนี้แสดงให้เห็นว่า ปริมาณของไคโตซานและกลูตารัลดีไฮด์เป็นปัจจัยสำคัญในการเตรียมวัสดุปิดแผลเพื่อให้ได้วัสดุที่มีสมบัติเหมาะสมสำหรับใช้ปิดแผล สรุปได้ว่า ไฮโดรเจลของพอลิไวนิลแอลกอฮอล์ว่านหางจระเข้ และไคโตซาน มีศักยภาพในการพัฒนาต่อไปเป็นวัสดุปิดแผลไฟไหม้ในอุดมคติ
Chitosan is a natural polysaccharide derived from chitin. It has non-toxic, biocompatible, biodegradable, hemostatic and antibacterial properties that can be used in a wide range of biomedical applications. In this study, the hydrogels of poly(vinyl alcohol), aloe vera and chitosan were prepared by mixing their aqueous solutions followed by crosslinking with glutaraldehyde for usage in burn wound dressing application. The effects of the chitosan (1%, 2% and 3%) and glutaraldehyde contents (2.5%, 5% and 10%) on physical, mechanical properties and antibacterial activities of the hydrogels were studied. The structure of the hydrogels was characterized by using Fourier transform infrared spectroscopy. The results showed that swelling ratio, water vapor transmission rate, deswelling and porosity of the hydrogels increased with the increase of chitosan content but decreased with the increase of glutaraldehyde content. Besides, the increase of chitosan and glutaraldehyde contents resulted in slightly increased tensile strength, while elongation at break decreased. Antibacterial assessment showed that the hydrogels inhibited both Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). The results indicated that the contents of chitosan and glutaraldehyde are the key factors in obtaining such suitable properties required for the wound dressing. In conclusion, the hydrogels of poly (vinyl alcohol), aloe vera and chitosan have the potential to be further developed as an ideal burn wound dressing material.
Keywords
[1] K. C. Lee, K. Joory, and N. S. Moiemen, “History of burns: The past, present and the future,” Burns Trauma, vol. 2, no. 4, pp. 169–180, 2014.
[2] J. McAuley, “Burns: An Introduction to Burns and Basic Wound Care,” Physician Assistant Clinics, vol. 8, no. 1, pp. 67–77, 2023.
[3] H. Kim, S. Shin, and D. Han, “Review of History of Basic Principles of Burn Wound Management,” Medicina (Kaunas), vol. 58, no. 3, pp. 1–12, 2022.
[4] I. P. G. Committee, S. Steering, and S. Advisory, “ISBI practice guidelines for burn care,” Burns, vol. 42, no. 5, pp. 953–1021, 2016.
[5] R. Laurano, M. Boffito, G. Ciardelli, and V. Chiono, “Wound dressing products: A translational investigation from the bench to the market,” Engineered Regeneration, vol. 3, no. 2, pp. 182–200, 2022.
[6] R. A. Rather, M. A. Bhat, and A. H. Shalla, “An insight into synthetic and physiological aspects of superabsorbent hydrogels based on carbohydrate type polymers for various applications: A review,” Carbohydrate Polymer Technologies and Applications, vol. 3, pp. 1–17, 2022.
[7] J. Su, J. Li, J. Liang, K. Zhang, and J. Li, “Hydrogel preparation methods and biomaterials for wound dressing,” Life (Basel), vol. 11, no. 10, pp. 1–22, 2021.
[8] Z. Zeng, M. Zhu, L. Chen, Y. Zhang, T. Lu, Y. Deng, W. Ma, J. Xu, C. Huang, and R. Xiong, “Design the molecule structures to achieve functional advantages of hydrogel wound dressings: Advances and strategies,” Composites Part B: Engineering, vol. 247, pp. 1–20, 2022.
[9] S. Song, Z. Liu, M. A. Abubaker, L. Ding, J. Zhang, S. Yang, and Z. Fan, “Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing,” Materials Science and Engineering: C, vol. 126, pp. 1–13, 2021.
[10] T. Y. Huang, G. S. Wang, C. C. Tseng, and W. T. Su, “Epidermal cells differentiated from stem cells from human exfoliated deciduous teeth and seeded onto polyvinyl alcohol/silk fibroin nanofiber dressings accelerate wound repair,” Materials Science and Engineering: C, vol. 104, pp. 1–11, 2019.
[11] C. Suwanboon, N. Chanunpanich, and K. Kittiniyom, “Antibacterial Membrane from Mixed Poly(vinylidene fluoride) Nanofiber and Poly(vinyl alcohol) Nanofiber,” The Journal of KMUTNB, vol. 28, no. 4, pp. 881–891, 2018 (in Thai).
[12] A. Boonkham, S. Suwancharoen, P. Suwannawong, B. Buntham, and J. Nguendee, “Shrimp Shell Deproteinization by Using Papain and Antifungal of Chitosan Against Fusarium oxysporum,” The Journal of KMUTNB, vol. 29, no. 2, pp. 282–291, 2019 (in Thai).
[13] R. Jayakumar, M. Prabaharan, P. T. Sudheesh Kumar, S. V. Nair, and H. Tamura, “Biomaterials based on chitin and chitosan in wound dressing applications,” Biotechnology Advances, vol. 29, no. 3, pp. 322–337, 2011.
[14] M. Ji, J. Li, Y. Wang, F. Li, J. Man, J. Li, C. Zhang, S. Peng, and S. Wang, “Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects,” Carbohydrate Polymers, vol. 297, pp. 1–21, 2022.
[15] N. Kulkarni, P. Jain, A. Shindikar, P. Suryawanshi, and N. Thorat, “Advances in the colon-targeted chitosan based multiunit drug delivery systems for the treatment of inflammatory bowel disease,” Carbohydr Polym, vol. 288, pp. 1–21, 2022.
[16] Y. Arman, M. Rojkongsub, and K. Piyamonckala, “Adsorption methylene blue dye by chitosan flake: Equilibrium and applied to use for industrial factory,” The Journal of KMUTNB, vol. 28, no. 4, pp. 825-835, 2018 (in Thai).
[17] S. Bautista-Baños, A. N. Hernández-Lauzardo, M. “G. Velázquez-del Valle, M. Hernández- López, E. Ait Barka, E. Bosquez-Molina, and C. L. Wilson, “Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities,” Crop Protection, vol. 25, no. 2, pp. 108–118, 2006.
[18] J. Tangjitjareonkun and R. Supabphol, “Application of aloe vera on wound healing,” Journal of Medicine and Health Sciences, vol. 22, no. 3, pp. 53–67, 2015.
[19] S. Rahman, P. Carter, and N. Bhattarai, “Aloe vera for tissue engineering applications,” Journal of Functional Biomaterials,” vol. 8, no. 1, pp. 1–17, 2017.
[20] D. Hekmatpou, F. Mehrabi, K. Rahzani, and A. Aminiyan, “The effect of aloe vera clinical trials on prevention and healing of skin wound: A systematic review,” Iranian Journal of Medical Sciences, vol. 44, no. 1, pp. 1–9, 2019.
[21] M. Naseri-Nosar, S. Farzamfar, M. Salehi, A. Vaez, R. Tajerian, and M. Azami, “Erythropoietin/ aloe vera-releasing wet-electrospun polyvinyl alcohol/chitosan sponge-like wound dressing: In vitro and in vivo studies,” Journal of Bioactive and Compatible Polymers, vol. 33, no. 3, pp. 269–281, 2017.
[22] S. Rafieian, H. Mahdavi, and M. E. Masoumi, “Improved mechanical, physical and biological properties of chitosan films using Aloe vera and electrospun PVA nanofibers for wound dressing applications,” Journal of Industrial Textiles, vol. 50, no. 9, pp. 1456–1474, 2019.
[23] H. Sosiati, W. Nur Fatihah, Yusmaniar, and M. B. Nur Rahman, “Characterization of the Properties of Electrospun Blended Hybrid Poly(Vinyl Alcohol)_Aloe Vera/Chitosan Nano- Emulsion Nanofibrous Membranes,” Key Engineering Materials, vol. 792, pp. 74–79, 2019.
[24] D. M. Escobar-Sierra and Y. P. Perea-Mesa, “Manufacturing and evaluation of Chitosan, PVA and Aloe Vera hydrogels for skin applications,” Dyna, vol. 84, no. 203, pp. 134–142, 2017.
[25] T. Zhang, Z. Yu, Y. Ma, B.-S. Chiou, F. Liu, and F. Zhong, “Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values,” Food Hydrocolloids, vol. 124, pp. 1–12, 2022.
[26] T. Sultana, M. Hossain, S. Rahaman, Y. S. Kim, J. G. Gwon, and B. T. Lee, “Multi-functional nanocellulose-chitosan dressing loaded with antibacterial lawsone for rapid hemostasis and cutaneous wound healing,” Carbohydr Polym, vol. 272, pp. 1–14, 2021.
[27] L. Fan, H. Yang, J. Yang, M. Peng, and J. Hu, “Preparation and characterization of chitosan/ gelatin/PVA hydrogel for wound dressings,” Carbohydr Polym, vol. 146, pp. 427–434, 2016.
[28] Y. Liang, B. Chen, M. Li, J. He, Z. Yin, and B. Guo, “Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing,” Biomacromolecules, vol. 21, no. 5, pp. 1841–1852, 2020.
[29] M. T. Khorasani, A. Joorabloo, A. Moghaddam, H. Shamsi, and Z. MansooriMoghadam, “Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application,” International Journal of Biological Macromolecules, vol. 114, pp. 1203–1215, 2018.
[30] M. T. Khorasani, A. Joorabloo, H. Adeli, Z. Mansoori-Moghadam, and A. Moghaddam, “Design and optimization of process parameters of polyvinyl(alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials,” Carbohydr Polym, vol. 207, pp. 542–554, 2019.
[31] P. Thongpo, P. Kuntadong, R. Molloy, and R. Bunkerd, “Synthesis and properties of poly(sodium 2-acrylamido-2-methypropane sulfonate) hydrogel sheets and effect of adding gelatinized cassava starch,” Burapha Science Journal, vol. 23, no. 2, pp. 1059–1069, 2018.
[32] Q. Yu, Y. Song, X. Shi, C. Xu, and Y. Bin, “Preparation and properties of chitosan derivative/ poly(vinyl alcohol) blend film crosslinked with glutaraldehyde,” Carbohydrate Polymers, vol. 84, no. 1, pp. 465–470, 2011.
[33] H. Hu, J. H. Xin, H. Hu, A. Chan, and L. He, “Glutaraldehyde-chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films,” Carbohydr Polym, vol. 91, no. 1, pp. 305–313, 2013.
[34] M. Kokabi, M. Sirousazar, and Z. M. Hassan, “PVA–clay nanocomposite hydrogels for wound dressing,” European Polymer Journal, vol. 43, no. 3, pp. 773–781, 2007.
[35] Y. Xie, Z. X. Yi, J. X. Wang, T. G. Hou, and Q. Jiang, “Carboxymethyl konjac glucomannancrosslinked chitosan sponges for wound dressing,” International Journal of Biological Macromolecules, vol. 112, pp. 1225–1233, 2018.
[36] T. Thanyacharoen, P. Chuysinuan, S. Techasakul, P. Nooeaid, and S. Ummartyotin, “Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity,” International Journal of Biological Macromolecules, vol. 107, pp. 363– 370, 2018.
[37] A. Chaturvedi, A. K. Bajpai, J. Bajpai, and S. K. Singh “Evaluation of poly(vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials,” Materials Science and Engineering: C, vol. 65, pp. 408–418, 2016.
[38] A. Chang, Z. Ye, Z. Ye, J. Deng, J. Lin, C. Wu, and H. Zhu, “Citric acid crosslinked sphingan WL gum hydrogel films supported ciprofloxacin for potential wound dressing application,” Carbohydrate Polymers, vol. 291, pp. 1–9, 2022.
[39] M. Goh, Y. Hwang, and G. Tae, “Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing,” Carbohydrate Polymers, vol. 147, pp. 251–260, 2016.
[40] R. Bunkerd, S. Innok, S. Innok, and R. Molloy, “Preparation of synthetic hydrogel sheets of poly(sodium 2-acrylamido2-methylpropane sulfonate) containing extracts from krueo ma noy leaves,” KMUTT Research and Development Journal, vol. 43, no. 3, pp. 297–310, 2020 (in Thai).
[41] Y. Chen, L. Yan, T. Yuan, Q. Zhang, and H. Fan, “Asymmetric polyurethane membrane with in situ-generated nano-TiO2 as wound dressing,” Journal of Applied Polymer Science, vol. 119, no. 3, pp. 1532–1541, 2011.
[42] M. T. Razzaka, D. Darwisb, Zainuddinb, and Sukirno, “Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing,” Radiation Physics and Chemistry, vol. 62, no. 1, pp. 107–113, 2001.
[43] A. Chhatri, J. Bajpai, A. K. Bajpai, S. S. Sandhu, N. Jain, and J. Biswas, “Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors,” Carbohydrate Polymers, vol. 83, no. 2, pp. 876–882, 2011.
[44] T. Ikeda, K. Ikeda, K. Yamamoto, H. Ishizaki, Y. Yoshizawa, K. Yanagiguchi, S. Yamada, and Y. Hayashi, “Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold,” BioMed Research International, vol. 2014, pp. 1–8, 2014.
[45] R. Pereira, A. Carvalho, D. C. Vaz, M. H. Gil, A. Mendes, and P. Bartolo, “Development of novel alginate based hydrogel films for wound healing applications,” International Journal of Biological Macromolecules, vol. 52, pp. 221– 230, 2013.
[46] J. Lu, Y. Chen, M. Ding, X. Fan, J. Hu, Y. Chen, J. Li, Z. Li, and W. Liu, “A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing,” Carbohydr Polym, vol. 277, pp. 1–14, 2022.
[47] X. Qing, G. He, Z. Liu, Y. Yin, W. Cai, L. Fan, and P. Fardim, “Preparation and properties of polyvinyl alcohol/N-succinyl chitosan/ lincomycin composite antibacterial hydrogels for wound dressing,” Carbohydrate Polymers, vol. 261, pp. 1–9, 2021.
DOI: 10.14416/j.kmutnb.2024.08.006
ISSN: 2985-2145