Page Header

การติดตามคุณภาพซุปจากกากถั่วดาวอินคากึ่งสำเร็จรูปชนิดผงที่ทำแห้งแบบโฟมแมทและแบบลมร้อนระหว่างการเก็บ
Quality Assessment of Instant Soup Powder from Sacha Inchi Residue Processed by Foam Mat and Hot Air Drying Methods during Storage

Suphatsara Kittipittayakool, Wichamanee Yuenyongputtakal

Abstract


กากถั่วดาวอินคาหลังการบีบน้ำมันยังคงมีคุณค่าทางโภชนาการที่มีประโยชน์นำมาสร้างมูลค่าเพิ่มได้ ซึ่งเป็นผลดีด้านเศรษฐกิจ สิ่งแวดล้อม และการใช้ประโยชน์ถั่วดาวอินคาอย่างคุ้มค่า งานวิจัยนี้ผลิตซุปที่ปรุงรสแล้วและนำมาทำแห้งแบบโฟมแมทและแบบลมร้อน เพื่อให้อยู่ในรูปแบบผงที่สามารถชงกับน้ำร้อนเพื่อคืนรูปก่อนรับประทานได้ ติดตามการเปลี่ยนแปลงคุณภาพของซุปกึ่งสำเร็จรูปโดยการทำแห้งแบบโฟมแมท (Foam Mat Dried Soup; FMDS) และซุปกึ่งสำเร็จรูปโดยการทำแห้งแบบลมร้อน (Hot air Dried Soup; HDS) โดยบรรจุซุปผงในซองอะลูมิเนียมฟอยล์ เก็บที่อุณหภูมิห้อง เป็นเวลา 60 วัน จากผลการทดลองพบว่า ทั้ง FMDS และ HDS มีคุณภาพเปลี่ยนแปลงไปอย่างมีนัยสำคัญทางสถิติ (p<0.05) คุณภาพที่เปลี่ยนแปลงไปมีดังนี้ ทางเคมีกายภาพ ได้แก่ ปริมาณความชื้น ค่า aw ความสามารถในการดูดความชื้น และค่าเพอร์ออกไซด์ สำหรับคุณภาพทางประสาทสัมผัส ได้แก่ คะแนนการเกาะตัวกันและกลิ่นหืน แต่ไม่พบการเปลี่ยนแปลงทางจุลินทรีย์ ได้แก่ ปริมาณจุลินทรีย์ทั้งหมด ปริมาณยีสต์และรา รวมทั้งคุณภาพทางประสาทสัมผัสด้านความสามารถในการดูดน้ำกลับ (p≥0.05) ตลอดเวลาเก็บรักษา FMDS มีปริมาณความชื้น (1.16–2.42%) และค่า aw (0.21–0.44) ต่ำกว่า HDS (ความชื้น 4.44–5.72%, aw 0.48–0.51) แสดงถึงโอกาสในการคงตัวระหว่างการเก็บดีกว่า

Sacha Inchi (Plukenetia volubilis L.) residues after oil expression are still nutrient-rich and can be used for creating value-added products which are good for economy and environment. In this research, seasoned soup was prepared by foam mat and hot air-drying methods to consume as an instant powder product. The quality of instant soup powder by Foam Mat Drying (FMDS) and by Hot Air Drying (HDS) was evaluated. The instant soup powder was packaged in aluminum foil bags and stored for 60 days at room temperature. The results showed that the qualities of both Foam Mat Dried Soup (FMDS) and Hot Air-Dried Soup (HDS) were statistically different (p<0.05). The physicochemical qualities: moisture content, aw value, hygroscopicity and peroxide value, and the sensory qualities: cohesion and rancidity scores changed. The microbiological qualities (total viable count, yeast and mold count) and rehydration sensory score did not change (p≥0.05) in storage time. FMDS had lower moisture content (1.16–2.42%) and aw value (0.21–0.44) than HDS (moisture content of 4.44–5.72%, aw value of 0.48–0.51), These results showed that FMDS had better stability during storage.


Keywords



[1] S.K. Amit, M. Uddin, R. Rahman, S. M. Islam, and M. S. Khan, “A review on mechanisms and commercial aspects of food preservation and processing,” Agriculture & Food Security, vol. 6, no. 1, pp. 1–22, 2017.

[2] D. Agrahar-Murugkar and K. Jha, “Effect of drying on nutritional and functional quality and electrophoretic pattern of soyflour from sprouted soybean (Glycine max),” Journal of food science and technology, vol. 47, no. 5, pp. 482–487, 2010.

[3] S. Mounir, “Foam mat drying,” Drying technologies for foods-fundamentals and applications, pp. 169–191, 2017.

[4] S. Ishwarya, C. Anandharamakrishnan, and A. G. Stapley, “Spray-freeze-drying: A novel process for the drying of foods and bioproducts,” Trends in Food Science & Technology, vol. 41 no. 2, pp. 161–181, 2015.

[5] D. Huang, P. Yang, X. Tang, L. Luo, and B. Sunden, “Application of infrared radiation in the drying of food products,” Trends in Food Science & Technology. vol. 110, pp. 765–777, 2021.

[6] P. Kandasamy, N. Varadharaju, S. Kalemullah, and D. Maladhi, “Optimization of process parameters for foam-mat drying of papaya pulp,” Journal of food science and technology, vol. 51, no. 10, pp. 2526–2534, October 2014.

[7] D. M. Kadam, R. T. Patil, and P. Kaushik, “Foam mat drying of fruit and vegetable products,” Drying of foods, vegetables and fruits, vol. 1, pp. 111–124, 2010.

[8] S. L. Tan, R. Sulaiman, Y. Rukayadi, and N. S. Ramli, “Physical, chemical, microbiological properties and shelf life kinetic of spray-dried cantaloupe juice powder during storage,” Lwt, vol. 140, article no. 110597, 2021.

[9] M. L. Ng and R. Sulaiman, “Development of beetroot (Beta vulgaris) powder using foam mat drying,” Lwt, vol. 88, pp. 80–86, 2018.

[10] S. Damodaran, K. L. Parkin, and O. R. Fennema, Fennema's food chemistry, eds, CRC press, 2007.

[11] K. O. Falade, K. I. Adeyanju, and P. I. Uzo-Peters, “Foam-mat drying of cowpea (Vigna unguiculata) using glyceryl monostearate and egg albumin as foaming agents,” European Food Research and Technology, vol. 217, no. 6, pp. 486–491, 2003.

[12] S. Rawdkuen, D. Murdayanti, S. Ketnawa, and S. Phongthai, “Chemical properties and nutritional factors of pressed-cake from tea and sacha inchi seeds,” Food Bioscience, vol. 15, pp. 64–71, 2016.

[13] M. D. Guillén, A. Ruiz, N. Cabo, R. Chirinos, and G. Pascual, “Characterization of sacha inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR Comparison with linseed oil,” Journal of the American Oil Chemists' Society, vol. 80, no. 8, pp. 755–762, 2003.

[14] L.F. Gutiérrez, L. M. Rosada, and Á. Jiménez, “Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction,” Grasas y aceites, vol. 62, no. 1, pp. 76–83, 2011.

[15] Y. Kim and Y. Je, “Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies,” Archives of cardiovascular diseases, vol. 109, no. 1, pp. 39–54, 2016.

[16] H. Kim, L. E. Caulfield, V. Garcia-Larsen, L. M. Steffen, J. Coresh, and C. M. Rebholz, “Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults,” Journal of the American Heart Association, vol. 8, no. 16, article no. 012865, 2019.

[17] P. Chaipan, “Reduction of beany flavor for sacha inchi flour quality improvement and utilization as ingredient in functional food product,” M.S. thesis, Department of Food Science and Technology, Faculty of Science, Burapha University, 2018 (in thai).

[18] W. Yuenyongputtakal, S. Chinnasarn, and N. Krasaechol, “A study on potential application of sacha inchi oil extraction by-product in functional food product development,” Department of Food Science and Technology, Faculty of Science, Burapha University, 2018 (in thai).

[19] S. Kittipittayakool and W. Yuenyongputtakal, “Formulation development of soup from Sacha inchi residue using a mixture design,” in proceedings 18th KU KPS National Conference, 2021, pp. 2190–2199 (in thai).

[20] R. Panyakrua,“Development of Instant germinated brown rice porridge mixed with cereal,” M.S. thesis, Department of Food Science and Technology, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, 2012 (in thai).

[21] Instant Red Kidney Bean Soup, TCPS 1507, 2019.

[22] S. Cong, W. Dong, J. Zhao, R. Hu, Y. Long, and X. Chi, “Characterization of the lipid oxidation process of robusta green coffee beans and shelf life prediction during accelerated storage,” Molecules, vol. 25, no. 5, pp. 1157, 2020.

[23] AOAC: Official method of analysis, 17th ed., Association of Official Analytical Chemists, 1995.

[24] S. Shaaruddin, H. M. Ghazali, S. H. Mirhosseini, and K. Muhammad, “Stability of betanin in pitaya powder and confection as affected by resistant maltodextrin,” LWT, vol. 84, pp. 129–134, 2017.

[25] M. P. Richards and H. O. Hultin, “Contributions of blood and blood components to lipid oxidation in fish muscle,” Journal of Agricultural and Food chemistry, vol. 50, no. 3, pp. 555– 564, 2002.

[26] W. H. Andrews, and T. S. Hammack. (2003). Bacteriological Analytical Manual Chapter 1 Food sampling and preparation of sample homogenate. [Online]. Available: http://www. fda.gov

[27] E. Varhan, F. Elmas, and M. Koç, “Foam mat drying of fig fruit: Optimization of foam composition and physicochemical properties of fig powder,” Journal of Food Process Engineering, vol. 42, no. 4, article no. e13022, 2019.

[28] R. Ergun, J. Guo, and B. Huebner-Keese, “Cellulose,” in Encyclopedia of Food and Health. Academic Press, Oxford, 2016, pp. 694–702.

[29] T. Sanz, A. Salvador, and S. M. Fiszman, “Effect of concentration and temperature on properties of methylcellulose-added batters application to battered, fried seafood,” Food Hydrocolloids, vol. 18, no. 1, pp. 127–131, 2004.

[30] S. Jaya and H. Das, “Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties,” Journal of Food Engineering, vol. 63, no. 2, pp. 125–134, 2004.

[31] M. Mohammadi, N. Sadeghnia, M. H. Azizi, T. R. Neyestani, and A. M. Mortazavian, “Development of gluten-free flat bread using hydrocolloids: Xanthan and CMC,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, pp. 1812– 1818, 2014.

[32] J. T. D. C. L. Toneli, K. J. Park, F. E. X. Murr, and A. A. Negreiros, “Efeito da umidade sobre a microestrutura da inulina em pó,” Food Science and Technology, vol. 28, pp. 122–131, 2008.

[33] J. Aguilera, J. del Valle, and M. Karel, “Caking phenomena in amorphous food powders,” Trends in Food Science & Technology, vol. 6, no. 5, pp. 149–155, 1995.

[34] E. Juarez-Enriquez, G. I. Olivas, P. B. Zamudio- Flores, S. Perez-Vega, I. Salmeron, E. Ortega- Rivas, and D. R. Sepulveda, “A review on the influence of water on food powder flowability,” Journal of Food Process Engineering, vol. 45, no. 5, article no. 14031, 2022.

[35] A. Farahnaky, N. Mansoori, M. Majzoobi, and F. Badii, “Physicochemical and sorption isotherm properties of date syrup powder: Antiplasticizing effect of maltodextrin,” Food and bioproducts processing, vol. 98, pp. 133–141, April 2016.

[36] D. B. Min, Food Lipids: Chemistry, Nutrition, and Biotechnology, CRC Press, 2008.

[37] F. Shahidi, and Y. Zhong, “Lipid oxidation: measurement methods,” Bailey's industrial oil and fat products, John Wiley & Sons, Inc, 2005.

[38] A. Ali, S. Abdullahi, and M. Awow, “The Effect of Antioxidants on Peroxide Value in Edible Oil,” Research Journal of Environmental and Earth Sciences, vol. 8, no. 1, pp. 2348–2532, 2022.

[39] J. Milani, and G. Maleki, “Hydrocolloids in food industry,” Food industrial processes–Methods and equipment, vol. 2, pp. 2–37, 2012.

[40] F. Salehi, “Effect of coatings made by new hydrocolloids on the oil uptake during deep-fat frying: A review,” Journal of Food Processing and Preservation, vol. 44, no. 11, Article no. e14879, 2020.

[41] P. P. Lewicki, “Water as the determinant of food engineering properties. A review,” Journal of food engineering, vol. 61, no. 4, pp. 483–495, 2004.

[42] S. Darniadi, P. Ho, and B. S. Murray, “Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties,” Journal of the Science of Food and Agriculture, vol. 98, no. 5, pp. 2002–2010, 2018.

[43] M. Azizpour, M. Mohebbi, and M. H. H. Khodaparast, “Effects of foam-mat drying temperature on physico-chemical and microstructural properties of shrimp powder,” Innovative food science & emerging technologies, vol. 34, pp. 122–126, 2016.

Full Text: PDF

DOI: 10.14416/j.kmutnb.2024.07.008

ISSN: 2985-2145