Page Header

The Influence of Steel Fiber on Properties of High-Performance Fiber Reinforced Alkali-Activated Material Mortar Based on High-Calcium Fly Ash and GGBFS

Darrakorn Intarabut, Piti Sukontasukkul, Buchit Maho, Phattharachai Pongsopha, Tanakorn Phoo-ngernkham, Sakonwan Hanjitsuwan

Abstract


บทความนี้นำเสนอผลกระทบของเส้นใยเหล็กในวัสดุเชื่อมประสานกระตุ้นด้วยด่างมอร์ตาร์สมรรถนะสูงจากเถ้าลอยแคลเซียมสูงผสมเถ้าตะกรันเหล็กต่อความสามารถในการทำงาน สมบัติเชิงกล เสริมเส้นใยเหล็กร้อยละ 0 ถึง 1.5 โดยปริมาตร ในการศึกษานี้ทำการแปรผันอัตราส่วนของเหลวต่อวัสดุประสานเท่ากับ 0.40 และ 0.45 และความเข้มข้น NaOHเท่ากับ 8 และ 12 โมลาร์ ทุกส่วนผสมจะใช้อัตราส่วนทรายต่อวัสดุประสานเท่ากับ 1.25 และอัตราส่วนสารละลายโซเดียมซิลิเกตต่อสารละลายโซเดียมไฮดอรกไซด์เท่ากับ 1.0 โดยทำการทดสอบความสามารถในการทำงาน (การไหลในแนวราบแบบอิสระ และเวลาในการไหลแนวราบแบบอิสระ) และทดสอบคุณสมบัติเชิงกล (กำลังรับแรงอัด กำลังรับแรงดัด) ผลการทดสอบพบว่า การไหลในแนวราบมีแนวโน้มลดลง ขณะที่เวลาในการไหลแผ่อิสระในแนวราบเพิ่มขึ้น ตามปริมาณเส้นใยเหล็กที่เพิ่มขึ้นกำลังรับแรงอัด กำลังรับแรงดัด ความเหนียว และกำลังรับแรงดัดคงค้างมีแนวโน้มเพิ่มขึ้นตามปริมาณเส้นใยเหล็ก

This article presents the effect of Steel Fiber (SF) on high performance Alkali-activated Material Mortar (AAM) from fly ash and Ground Granulated Blast-Furnace Slag (GGBFS) on physical properties and mechanical properties. The Steel Fiber (SF) was added at the rates of 0 to 1.5% by volume of AAM. In this study, the liquid alkaline-tobinder ratio and NaOH concentration were varied at 0.40 to 0.45 and 8 to 12M, respectively. The sand-to-binder ratio was fixed at 1.25 whereas the Na2SiO3-to-NaOH ratios was fixed at 1.0. The experimental series consisted of workability test (slump flow, T50 slump flow) and mechanical properties (compressive and flexural strength) of AAM. Test results indicated that the slump flow tended to decrease; however, the T50 slump flow tended to increase with increasing SF. The compressive strength, flexural strength, toughness, and residual strength of AAM tended to increase as the SF reinforcement increased.


Keywords



[1] B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, and L.A. Meyer, “Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” Climate change 2007, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 447–496, 2007.

[2] S. Detphan, T. Phoo-ngernkham, V. Sata, C. Detphan, and P. Chindaprasirt, “Portland cement containing fly ash, expanded perlite, and plasticizer for masonry and plastering mortars,” International Journal of GEOMATE, vol 15, no. 48, pp. 107–113, 2018.

[3] T. Phoo-Ngernkham, C. Phiangphimai, N Dam rongwiriyanupap, S. Hanjitsuwan, J. Thum rongvut, and P. Chindaprasirt, “A mix design procedure for alkali-activated high-calcium fly ash concrete cured at ambient temperature,” Advances in Materials Science and Engineering, 2018.

[4] T. Phoo-Ngernkham, C. Phiangphimai, D. Inta rabut, S. Hanjitsuwan, N Damrongwiriyanupap, L. Y. Li, and P. Chindaprasirt, “Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue,” Construction and Building Materials, vol. 247, pp. 118543, 2020.

[5] F. Puertas, B. González-Fonteboa, I. González Taboada, M. M. Alonso, G Torres-Carrasco, and F. Martínez-Abella, “Alkali-activated slag concrete: Fresh and hardened behavior,” Cement and concrete composites, vol. 85, pp. 22–31, 2018.

[6] F. Pacheco-Torgal, D. Moura, Y. Ding, and S. Jalali, “Composition, strength and workability of alkali-activated metakaolin based mortars,” Construction and Building Materials, vol. 25, no. 9, pp. 3732–3745, 2011.

[7] Y.J. Patel, and N. Shah, “Development of self-compacting geopolymer concrete as a sustainable construction material,” Construction and Building Materials, vol. 25, no. 6, pp. 412–421, 2018.

[8] F. Pacheco-Torgal, J. Castro-Gomes and S. Jalali, “Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products,” Construction and Building Material, vol. 22, no. 7, pp. 1305–1314, 2008.

[9] L. K. Turner and F. G. Collins, “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete,” Construction and Building Materials, vol. 43, pp. 125–130, 2013.

[10] F. Pacheco-Torgal, J. Castro-Gomes and S. Jalali, “Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products,” Construction and Building Materials, vol. 22, no. 7, pp. 1305–1314, 2008.

[11] T. Bakharev, “Resistance of geopolymer materials to acid attack,” Cement and Concrete Research, vol. 35, no. 4, pp. 658–670, 2005.

[12] S. Sasui, G. Kim, J. Nam, T. Koyama, and S. Chansomsak, “Strength and microstructure of class-C fly ash and GGBS blend geopolymer activated in NaOH & NaOH + Na2SiO3,” Materials (Basel), vol. 13, no. 1, pp. 59, 2020.

[13] A. Rafeet, R. Vinai, M. Soutsos, and W. Sha, “Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs),” Cement and Concrete Research, vol. 122, pp. 118–135, 2019.

[14] N. Marjanović, M. Komljenović, Z. Baščarević, V. Nikolić, and R. Petrović, “Physical mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends,” Ceramics International, vol. 41, no. 1, pp. 1421–1435, 2015.

[15] R. M. Hamidi, Z. Man, and K. A. Azizli, “Concentration of NaOH and the effect on the properties of fly ash based geopolymer,” Procedia Engineering, vol. 148, pp. 189–193, 2016.

[16] M. Olivia and H. Nikraz, “Properties of fly ash geopolymer concrete designed by Taguchi method,” Materials & Design (1980-2015), vol. 36 , pp. 191–198, 2012.

[17] P. Sukontasukkul, P. Pongsopha, P. Chin daprasirt, and S. Songpiriyakij, “Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer,” Construction and Building Materials, vol. 161, pp. 37–44, 2018.

[18] X. Gao, Q. L. Yu, R. Yu, and H. J. H. Brouwers, “Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites,” Materials and Structures, vol. 50, no. 2, 2017.

[19] E. Mohseni, “Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites,” Construction and Building Materials, vol. 186, pp 904–911, 2018.

[20] Q. Meng, C. Wu, H. Hao, J. Li, P. Wu, Y. Yang, and Z. Wang, “Steel fibre reinforced alkali-activated geopolymer concrete slabs subjected to natural gas explosion in buried utility tunnel,” Construction and Building Materials, vol. 246, pp. 118447, 2020.

[21] P. Zhang, K. Wang, J. Wang, J. Guo, S. Hu, and Y. Ling, “Mechanical properties and prediction of fracture parameters of geopolymer/ alkali-activated mortar modified with PVA fiber and nano-SiO2,” Ceramics International, vol. 46, pp. 20027–20037, 2020.

[22] Y. Liu, Z. Zhang, C. Shi, D. Zhu, and N. Li, Y. Deng, “Development of ultra-high performance geopolymer concrete (UHPGC): influence of steel fiber on mechanical properties,” Cement and Concrete Composites, vol. 112 , pp. 103670, 2020.

[23] EFNARC, “Specification and Guidelines for Self-Compacting. Concrete,” Association House, Surrey, UK, 2002.

[24] ACI Committee 363, “High-Strength Concrete (ACI 363R),” Symposium Paper, vol. 228, pp 79–80, 2005.

[25] Standard Specification for Chemical Admixtures for Concrete, ASTM C494/ C494M-17, 2017.

[26] Testing Hardened Concrete. Compressive Strength of Test Specimens, BS EN 12390-3, 2019.

[27] Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM C1609/C1609M-12, 2019.

[28] S. Grunewald, “Performance-based design of self compacting fibre reinforced concrete,” Doctoral Thesis, Civil Engineering and Geosciences, Delft University of Technology, Delft, 2004.

[29] I. Markovic, High-performance hybrid-fibre concrete development and utilization. Netherland: Delft University of Technology, 2006.

[30] E. C. Osoka, and C. I. O. Kamalu, “Effect of sodium hydroxide concentration on kinetic parameters during gelatinization,” Journal of Emerging Trends in Engineering and Applied Sciences, vol. 1, no. 1, pp. 5–8, 2010.

[31] M. Ibraheem, F. Butt, R. M. Waqas, K. Hussain, R. F. Tufail, N. Ahmad, K. Usanova, and M. A. Musarat, “Mechanical and microstructural characterization of quarry rock dust incorporated steel fiber reinforced geopolymer concrete and residual properties after exposure to elevated temperatures,” Materials, vol. 14, no. 22, pp. 6890, 2021.

[32] S. Jamnam, B. Maho, A. Techaphatthanakon, C. Ruttanapun, P. Aemlaor, H. Zhang, and P. Sukontasukkul, “Effect of graphene oxide nanoparticles on blast load resistance of steel fiber reinforced concrete,” Construction and Building Materials, vol. 343, pp. 128139, 2022.

[33] M. M. Al-mashhadani and O. Canpolat, “Effect of various NaOH molarities and various filling materials on the behavior of fly ash based geopolymer composites,” Construction and Building Materials, vol. 262, pp. 120560, 2020.

[34] S. Deepa Raj, R. Abraham, N. Ganesan, and D. Sasi, “Fracture properties of fibre reinforced geopolymer concrete,” International Journal of Scientific and Engineering Research. vol. 4, no. 5, pp. 75–80, 2013.

Full Text: PDF

DOI: 10.14416/j.kmutnb.2024.07.011

ISSN: 2985-2145