สมบัติการยับยั้งเชื้อแบคทีเรียของอนุภาคคอปเปอร์บนถ่านกัมมันต์ที่เตรียมด้วยการเอิบชุ่มแบบแห้งและแบบเปียก
Antibacterial Performance of Copper Particles Doped on Activated Carbon Prepared by Wet and Dry Impregnation Methods
Abstract
ถ่านกัมมันต์ซึ่งถูกเตรียมจากของเหลือทิ้งทางการเกษตรได้ถูกนำมาใช้บำบัดน้ำกันอย่างกว้างขวาง การเพิ่มสมบัติในการยับยั้งแบคทีเรียของถ่านกัมมันต์ดึงดูดความสนใจของนักวิจัยในการนำไปประยุกต์ใช้ในงานต่าง ๆ งานวิจัยนี้ศึกษาสมบัติการยับยั้งแบคทีเรียของคอปเปอร์บนถ่านกัมมันต์ที่เตรียมจากเม็ดบ๊วย (AAC) และเปรียบเทียบกับถ่านกัมมันต์ทางการค้า (CAC) อนุภาคคอปเปอร์ถูกเตรียมโดยวิธีเอิบชุ่มแบบเปียก (W) และแบบแห้ง (D) ด้วยสารละลายคอปเปอร์ (II) ไนเตรต เพื่อให้ได้ความเข้มข้นของคอปเปอร์ร้อยละ 5 โดยน้ำหนัก ผลวิเคราะห์องค์ประกอบจากเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์พบ Cu0 ในตัวอย่างที่เตรียมด้วยวิธีการเอิบชุ่มแบบเปียก (CAC-5W และ AAC-5W) ส่วน CuO และ Cu2O มักถูกพบในตัวอย่างที่เตรียมด้วยวิธีการเอิบชุ่มแบบแห้ง (CAC-5D และ AAC-5D) ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดแสดงให้เห็นว่าอนุภาคคอปเปอร์/คอปเปอร์ออกไซด์บน CAC-5W มีกระจายตัวได้ดีกว่าตัวอย่าง CAC-5D จากผลการวิเคราะห์สมบัติการยับยั้งเชื้อแบคทีเรียด้วยวิธี Disc Diffusion พบว่า ตัวอย่างที่เตรียมโดยวิธีเอิบชุ่มแบบเปียก (AAC-5W และ CAC-5W) แสดงสมบัติการยับยั้งเชื้อ Escherichia coli ATCC 25922 และ Staphylococcus aureus ATCC 25923 ได้ดีกว่าตัวอย่างที่เตรียมโดยวิธีการเอิบชุ่มแบบแห้ง (AAC-5D และ CAC-5D) ซึ่งแสดงสมบัติการยับยั้งเชื้อ E. coli เพียงอย่างเดียว ดังนั้นสรุปได้ว่าคอปเปอร์ที่เตรียมโดยวิธีเอิบชุ่มแบบเปียกมีสมบัติการยับยั้งเชื้อแบคทีเรียได้ดีกว่าที่เตรียมโดยวิธีการเอิบชุ่มแบบแห้ง
Activated carbon produced from agricultural wastes has been widely used in water treatment. Enhancing antibacterial properties of activated carbon has attracted researchers’ attention towards many applications. This research aims to study the antibacterial properties of copper impregnated on Apricot stone Activated Carbon (AAC) and compare with those of Commercial Activated Carbon (CAC). The copper particles were prepared by Wet impregnation (W) and Dry impregnation (D) methods with copper (II) nitrate solution to obtain 5%wt of Cu concentration. The XRD results demonstrated that Cu0 was found on activated carbons prepared by the wet impregnation method (CAC-5W and AAC-5W) whereas both CuO and Cu2O were mostly found on activated carbons prepared by the dry impregnation method (CAC-5D and AAC-5D). Furthermore, SEM images showed that the Cu/CuxO particles are well dispersed on CAC-5W than on CAC-5D. From the antibacterial activity evaluated by disc diffusion method showed that AAC-5W and CAC-5W exhibited the inhibition zone against both Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 whereas AAC-5D and CAC-5D exhibited the inhibition zone against only E. coli. Therefore, it can be concluded that copper loaded on activated carbon prepared by the wet impregnation exhibiting higher antibacterial activity than that by the dry impregnation.
Keywords
[1] A. H. Havelaar, A. V. Galindo, D. Kurowicka, and R. M. Cooke, “Attribution of foodborne pathogens using structured expert elicitation,” Foodborne Pathogens and Disease, vol. 5, no. 5, pp. 649–659, 2008.
[2] B. Thakur, A. Kumar, and D. Kumar, “Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity,” South African Journal of Botany, vol. 124, pp. 223–227, 2019.
[3] V. Scuderi, M. Buccheri, G. Impellizzeri, A. Di Mauro, G. Rappazzo, K. Bergum, B. Svensson, and V. Privitera, “Photocatalytic and antibacterial properties of titanium dioxide flat film,” Materials Science in Semiconductor Processing, vol. 42, pp. 32–35, 2016.
[4] S. Maiti, D. Krishnan, G. Barman, S. Ghosh, and J. Laha, “Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract,” Journal of Analytical Science and Technology, vol. 5, 2014.
[5] M. Siqueira, G. Coelho, M. de Moura, J. Breso lin, S. Hubinger, J. Marconcini, and L. Mattoso, “Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging,” Journal of Nanoscience and Nanotechnology, vol. 14, no. 7, pp. 5512–5517, 2014.
[6] P. Yugandhar and N. Savithramma, “Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon,” Applied Nanoscience, vol. 6, pp. 223–233, 2015.
[7] E . P a z o s - O r t i z , J . R o q u e - R u i z , E . Hinojos-Márquez, J. López-Esparza, A. Dono hué-Cornejo, J. Cuevas-González, L. Espinosa- Cristóbal, and S. Reyes-López, “Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram positive and gram-negative bacteria,” Journal of Nanomaterials, vol. 2017, pp. 1–9, 2017.
[8] A.C. Manna, “Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles,” Nano-Antimicrobials, pp. 151–180, 2012.
[9] J. Pasquet, Y. Chevalier, E. Couval, D. Bouvier, G. Noizet, C. Morlière, and M. Bolzinger, “Antimicrobial activity of zinc oxide particles on five micro-organisms of the challenge tests related to their physicochemical properties,” International Journal of Pharmaceutics, vol. 460, no. 1–2, pp. 92–100, 2014.
[10] T. Jin and Y. He, “Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens,” Journal of Nanoparticle Research, vol. 13, pp. 6877–6885, 2011.
[11] R. Prasanth, S. Kumar, A. Jayalakshmi, G. Singaravelu, K. Govindaraju, and V. Kumar, “Green synthesis of magnesium oxide nanoparticles and their antibacterial activity,” Indian Journal of Geo Marine Sciences, vol. 48, pp. 1210–1215, 2022.
[12] D. Longano, N. Ditaranto, L. Sabbatini, L. Torsi, and N. Cioffi, “Synthesis and antimicrobial activity of copper nanomaterials,” Nano Antimicrobials, pp. 85–117, 2012.
[13] S. Shankar and J. Rhim, “Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles,” Materials Letters, vol. 132, pp. 307–311, 2014.
[14] R. Betancourt-Galindo, P. Reyes-Rodriguez, B. Puente-Urbina, C. Avila-Orta, O. Rodríguez Fernández, G. Cadenas-Pliego, R. Lira-Saldivar, and L. García-Cerda, “Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties,” Journal of Nanomaterials, pp. 1–5, 2014.
[15] W. Shao, S. Wang, J. Wu, M. Huang, H. Liu, and H. Min, “Synthesis and antimicrobial activity of copper nanoparticle loaded regenerated bacterial cellulose membranes,” RSC Advances, vol. 6, pp. 65879–65884, 2016.
[16] J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar and A. Rahuman, “Synthesis and antimicrobial activity of copper nanoparticles,” Materials Letters, vol. 71, pp. 114–116, 2012.
[17] M. El Zowalaty, N. Ibrahim, M. Salama, K. Shameli, M. Usman and N. Zainuddin, “Synthesis, characterization, and antimicrobial properties of copper nanoparticles,” International Journal of Nanomedicine, vol. 8, no. 1, pp. 4467–4479, 2013.
[18] S. Mahmoodi, A. Elmi and S.H. Nezhadi, “Copper nanoparticles as antibacterial agents,” Journal of Molecular Pharmaceutics & Organic Process Research, vol. 6, no. 1, pp. 140, 2018.
[19] D. Phan, N. Dorjjugder, M. Khan, Y. Saito, G. Taguchi, H. Lee, Y. Mukai, and I. Kim, “Synthesis and attachment of silver and copper nanoparticles on cellulose nanofibers and comparative antibacterial study,” Cellulose, vol. 26, no. 11, pp. 6629–6640, 2019.
[20] S. Sagadevan, S. Vennila, A. Marlinda, Y. A. Douri, M. R. Johan, and J. A. Lett, “Synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles,” Applied Physics A, vol. 125, no. 8, pp. 489, 2019.
[21] S. Jadhav, S. Gaikwad, M. Nimse, and A. Rajb hoj, “Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity,” Journal of Cluster Science, vol. 22, no. 2, pp. 121–129, 2011.
[22] S. Karuppannan, R. Ramalingam, S. M. Khalith, M. Dowlath, G. D. Raiyaan, and K. Arunacha lam, “Characterization, antibacterial and photocatalytic evaluation of green synthesized copper oxide nanoparticles,” Biocatalysis and Agricultural Biotechnology, vol 31, pp. 101904, 2021.
[23] N. Jansri and M. Santikunaporn, “The studies of carbonization temperature and amount of phosphoric acid on phenol adsorption on activated carbon prepared from apricot stones,” The Journal of KMUTNB, col. 32, no. 1, pp. 26–37, 2022 (in Thai).
[24] T. Mahlangu, I. Arunachellan, S. S. Ray, and M. Onyango, “Preparation of copper-decorated activated carbon derived from Platamus occidentalis tree fiber for antimicrobial applications,” Materials, vol. 15, no. 17, pp. 5953–5968, 2022.
[25] M. Iwanow, T. Gärtner, V. Sieber and B. König, “Activated carbon as catalyst support: precursors, preparation, modification and Characterization,” Beilstein Journal of Organic Chemistry, vol. 16, pp. 1188–1202, 2020.
[26] P. Munnik, P. E. de Jongh, and K .P. de Jong, “Recent developments in the synthesis of supported catalysts,” Chemical Reviews, vol. 115, no. 14, pp. 6687–6718, 2015.
[27] A. Cooper, T. E. Davies, D. J. Morgan, S. Golunski, and S. H. Taylor, “Influence of the preparation method of Ag-K/CeO2-ZrO2-Al2O3 catalysts on their structure and activity for the simultaneous removal of soot and NOx,” Catalysts, vol. 10, no. 3, pp. 294–307, 2020.
[28] D. Deng, Y. Cheng, Y. Jin, T. Qi, and F. Xiao, “Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution,” Journal of Materials Chemistry, vol. 22, no. 45, pp. 23989, 2012.
[29] M. Hoseinnejad, S. Jafari, and I. Katouzian, “Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications,” Critical Reviews in Microbiology, vol. 44, no. 2, pp. 161–181, 2017.
[30] Ö. A. Kalaycı, F. B. Cömert, B. Hazer, T. Atalay, K. A. Cavicchi, and M. Cakmak, “Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers,” Polymer Bulletin, vol. 65, pp. 215–226, 2010.
[31] H. Palza, “Antimicrobial polymers with metal nanoparticles,” International Journal of Molecular Sciences, vol. 16, no. 1, pp. 2099–2116, 2015.
[32] R. Roghayieh, M. Rahim, M. Mehran, T. Hossein, E. Parya, and S. Y. Aidin, “Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film,” Applied Nanoscience, vol. 10, pp. 465–476, 2020.
[33] L. Yuanyuan, L. Binjie, W. Yonghui, Z. Yanbao, and S. Lei, “Preparation of carboxymethyl chitosan/copper composites and their antibac terial properties,” Materials Research Bulletin, vol. 48, no. 9, pp. 3411–3415, 2013.
[34] S. Logpriya, V. Bhuvaneshwari, D. Vaidehi, R. P. SenthilKumar, R. S. N. Malar, B. P. Sheetal, R. Amsaveni, and M. Kalaiselv, “Preparation and characterization of acorbic acid-mediated chitosan–copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activity,” Journal of Nanostructure in Chemistry, vol. 8, no. 3, pp. 301–309, 2018.
[35] A. Lanje, S. Sharma, R. Pode, F. N. A. Ningthoujam, and S. Raghumani, “Synthesis and optical characterization of copper oxide nanoparticles,” Advances in Applied Science Research, vol. 1, no. 2, pp. 36–40, 2010.
[36] M. Kouti and L. Matouri, “Fabrication of nanosized cuprous oxide using fehling's solution,” Transaction F: Nanotechnology, vol. 17, pp. 73–78, 2010.
[37] A. C. Bueno, M. Mayer, M. Weber, M. Bechelany, M. Klotz, and D. Farrusseng, “Impregnation protocols on alumina beads for controlling the preparation of supported metal catalysts,” Catalysts, vol. 9, pp. 577–588, 2019.
[38] C. Hai-feng, W. Juan-juan, W. Ming-yue, and J. Hui, “Preparation and antibacterial activities of copper nanoparticles encapsulated by carbon,” New Carbon Materials, vol. 34, no. 4, pp. 382–389, 2019.
[39] P. G. Bhavyasree and T. S. Xavier, “Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity,” Heliyon, vol. 6, no. 2, e03323, 2020.
[40] P. S.Harikumar and A. Aravind, “Antibacterial activity of copper nanoparticles and copper nanocomposites against Escherichia coli Bacteria,” International Journal of Sciences, vol. 2, no. 2, pp. 83–90, 2016.
DOI: 10.14416/j.kmutnb.2024.07.007
ISSN: 2985-2145