Page Header

ความก้าวหน้าของกระบวนการปรับสภาพชีวมวลลิกโนเซลลูโลสด้วยกระบวนการทางเคมีเพื่อกระบวนการกลั่นทางชีวภาพ
Progress in Chemical Pretreatment of Lignocellulose Biomass for Applications in Biorefinery

Theerawut Phusantisampan, Nichaphat Kitiborwornkul

Abstract


ชีวมวลลิกโนเซลลูโลสเป็นแหล่งวัตถุดิบเพื่อการผลิตพลังงานหมุนเวียนและกระบวนการกลั่นทางชีวภาพที่สำคัญ ซึ่งกระบวนการกลั่นทางชีวภาพที่เปลี่ยนวัตถุดิบลิกโนเซลลูโลสเป็นผลิตภัณฑ์ต่าง ๆ ที่มีมูลค่าสูง เช่นเชื้อเพลิงชีวภาพ ชีวเคมีและไบโอโพลีเมอร์ กระบวนการผลิตนั้นประกอบด้วยขั้นตอนหลักคือการปรับสภาพชีวมวล ไฮโดรไลซิส การหมัก และการสกัดแยกส่วนผลผลิต ซึ่งในขั้นตอนการปรับสภาพชีวมวลนั้นมีความสำคัญต่อกระบวนการโดยรวม เนื่องจากชีวมวลลิกโนเซลลูโลสมีลักษณะทางเคมีและกายภาพที่แข็งแรงทำให้ประสิทธิภาพการทำงานของเอนไซม์ในกระบวนการไฮโดรไลซิสลดลง ในปัจจุบันการปรับสภาพชีวมวลมีหลายวิธี เช่น การปรับสภาพทางเคมี ทางกายภาพ ทางกายภาพ-เคมี และการปรับสภาพด้วยวิธีผสม ซึ่งการเลือกใช้วิธีการปรับสภาพก็จะขึ้นอยู่กับชนิดลิกโนเซลลูโลสว่าเหมาะสมกับวิธีใด และเนื่องจากปริมาณของลิกโนเซลลูโลสที่เป็นของเสียเหลือทิ้งมีปริมาณมากจึงเกิดแนวคิดที่จะลดของเสียเหล่านี้โดยนำมาเพิ่มมูลค่าเป็นผลผลิตในอุตสาหกรรมปลายน้ำที่หลากหลาย นำมาสู่รูปแบบที่เรียกว่าเศรษฐกิจชีวภาพ เศรษฐกิจหมุนเวียน และเศรษฐกิจสีเขียว (BCG Economy) สอดคล้องกับเป้าหมายการพัฒนาที่ยั่งยืน (SDG) ของสหประชาชาติ (UN) จึงมีการเลือกใช้สารเคมีที่นำมาปรับสภาพเป็นสารเคมีที่เป็นมิตรต่อสิ่งแวดล้อม (Green solvent) เช่น สารไอออนิกลิควิด (Ionic liquid) และสารละลายดีพยูเทคติก (DES) โดยในบทความนี้มุ่งเน้นให้เห็นถึงตัวเลือกของวิธีการปรับสภาพชีวมวลด้วยวิธีทางเคมีที่มีในปัจจุบันและได้รับการพัฒนาวิจัยมาอย่างต่อเนื่อง รวมไปถึงการวิเคราะห์ข้อดีข้อเสีย และแนะนำจุดที่ควรพัฒนาของกระบวนการ เพื่อพัฒนาเป็นองค์ความรู้ในการวิจัยต่อยอดและเป็นข้อมูลในการประยุกต์ใช้การปรับสภาพในกระบวนการกลั่นทางชีวภาพต่อไปในอนาคต

Lignocellulose biomass is raw material for production of renewable energy and biorefining process. Biorefining process converts lignocellulose biomass to various value-added products, such as biofuels, biochemical, and biopolymers. This process is composed of multi-step reactions including pretreatment, hydrolysis, fermentation and product recovery. Among these 4 steps, pretreatment is important to the feasibility of the overall process, because lignocellulose has strong chemical and physical characteristics, which cellulase inefficiently accesses and hydrolyzes biomass. Currently, there are many pretreatment methods, such as chemical pretreatment, physical pretreatment, physical-chemical pretreatment, and combined pretreatment method. The selection of the appropriate method depends on the type of lignocellulose. Due to the abundant amount of lignocellulose in nature, it is necessary to develop the biorefining process to convert the waste to value-added products. This concept agrees well with the Bio economy, Circular economy, and Green economy (BCG Economy) to achieve the sustainable development goals (SDG) of United Nations (UN). Therefore, green chemicals for pretreatment are selected with environmentally friendly property, such as ionic liquid and Deep Eutectic Solutions (DES). This review describes the options of chemical pretreatment methods that are developed by researchers. The pros and cons of each pretreatment method are discussed and the room for improvement is suggested. The knowledge obtained from this review will benefit to provide information for further development and research in biorefining process in the future.


Keywords



[1] A. Suttipan. (2022) Networks. Office of the National Economic and Social Development Council [Online] (in Thai). Available: https:// sdgs.nesdc.go.th

[2] T. Ruensodsai and M. Sriariyanun, “Sustainable development and progress of lignocellulose conversion to platform chemicals,” The Journal of KMUTNB, vol. 32, no. 4, 2022 (in Thai).

[3] A. Krutthaphan, W. Chaowasin, K. Theinnoi, and C. Wongkhorsub, “Influence of injection timing on performance, combustion and emission characteristics from diesel engine fueled with diesel-plastic pyrolysis oil,” The Journal of KMUTNB, vol. 32, no. 2, 2022 (in Thai).

[4] A. Jantarawattana and P. Kullamethee, “The feasibility study of ethanol fermentation from biomass: Feather pennisetum grass (Pennisetum pedicellatum Trin) and residual bamboo shoot,” The Journal of KMUTNB, vol. 26, no. 1, 2016 (in Thai).

[5] T. Khampha, T. Dontree, N. Sooksawat, and S. Singhtho, “The Utilization of agricultural residues for solid fuel alcohol and lapid fuel briquettee production,” The Journal of KMUTNB, vol. 30, no. 2, 2020 (in Thai).

[6] A. L. Woiciechowski, C. J. D. Neto, L. P. de S. Vandenberghe, D. P. de C. Neto, A. C. N. Sydney, L. A. J. Letti, S. G. Karp, L. A. Z. Torres, and C. R. Soccol, “Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance - Conventional processing and recent advances,” Bioresource Technology, vol. 304, pp. 122848, 2020.

[7] S. Soponronnarit, “Thailand’s energy situation and strategic guidance for reducing greenhouse gas emission,” The Journal of KMUTNB, vol. 29, no. 9, 2019 (in Thai).

[8] K. Srithiang, “Development of biomass briquettes from mixed pineapple peel and corn cob,” The Journal of KMUTNB, vol. 33, no. 3, 2021 (in Thai).

[9] W. Noo-ngam and T. Silpcharu, “Management strategies for achieving sustainable excellence in the industrial business sector,” The Journal of KMUTNB, vol. 31, no. 1, 2021 (in Thai).

[10] Y-S. Cheng, P. Mutrakulcharoen, S. Chuetor, K. Cheenkachorn, P. Tantayotai, E. J. Panakkal, and M. Sriariyanun, “Recent situation and progress in biorefining process of lignocellulosic biomass: toward green economy,” Applied Science and Engineering Progress, vol. 13, no. 4, pp. 299–311, 2020 (in Thai).

[11] M. P. Gundupalli and M. Sriariyanun, “Recent trends and updates for chemical pretreatment of lignocellulosic biomass,” Applied Science and Engineering Progress, vol. 16, no. 1, pp. 5842, 2022 (in Thai).

[12] S.Wisansakkul and O. Oupathumpanont, “Effect of bagasse quantity on quality of thermoplasticstarch from compression molding process for woven product,” The Journal of KMUTNB, vol. 32, no. 2, 2021 (in Thai).

[13] S. Kaewsen, S. Wisuttipaet, P. Attavinijtrakarn, and T. Roopsing, “The development model of managerial competency in the biomass power plant VSPP industry,” The Journal of KMUTNB, vol. 32, no. 4, 2022 (in Thai).

[14] S. Lakonpon, S. Thepchit, P. Attavinijtrakarn, and S. Chokmavirote, “The biomass power plant management model in Thailand,” The Journal of KMUTNB, vol. 32, no. 1, 2022 (in Thai).

[15] N. Dahmen, I. Lewandowski, S. Zibek, and A. Weidtmann, “Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives,” GCB Bioenergy, vol. 11, no. 1, pp. 107–117, 2019.

[16] T. Sukontachart, S. Pinthapataya, and W. Simachokedee, “Development of industrial waste management model towards socia enterprises for community,” The Journal of KMUTNB, vol. 31, no. 1, pp. 158–168, 2021 (in Thai).

[17] A. Thanapimmetha, S. Tiyanusorn, P. Srinophakun, and M. Saisriyoot, “Reducing sugar production from empty fruit bunches with enzyme Cellic Ctec2®,” The Journal of KMUTNB, vol. 28, no. 2, pp. 285–290, 2018 (in Thai).

[18] S. Polprasert, “Pretreatment of lignocellulosic materials for ethanol production,” Scholarly Article, vol. 22, no. 5, 2014.

[19] S. Vieira, M. V. Barros, A. C. N. Sydney, C. M. Piekarski, A. C. de Francisco, L. P. de S. Vandenberghe, and E. B. Sydney, “Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol,” Bioresource Technology, vol. 299, 2020, Art. no. 122635.

[20] C. Allen, G. Metternicht, and T. Wiedmann, “Initial progress in implementing the sustainable development goals (SDGs): A review of evidence from countries,” Sustainability Science, vol. 13, pp. 1453–1467, 2018.

[21] M. Jędrzejczyk, E. Soszka, M. Czapnik, A. M. Ruppert, and J. Grams, “Chapter 6 - Physical and chemical pretreatment of lignocellulosic biomass,” in Second and Third Generation of Feedstocks, A. Basile, F. Dalena, Elsevier, 2019, ch. 6, pp. 143–196.

[22] T. P. Silva, F. S. de Albuquerque, A. N. Ferreira, D. M. R. C. D. Santos, T. V. D. Santos, S. M. P. Meneghetti, M. Franco, J. M. R. D. Luz, and H. J. V. Pereira, “Dilute acid pretreatment for enhancing the enzymatic saccharification of agroresidues using a Botrytis ricini endoglucanase,” Biotechnology and Applied Biochemistry, 2022.

[23] P. Moodley, Y. Sewsynker-Sukai, and E. B. G. Kana, “Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: Potential for bioethanol production,” Bioresource Technology, vol. 310, 2020, Art. no. 123372.

[24] X. Chen, R. Zhai, K. Shi, Y. Yuan, B. E. Dale, Z. Gao, and M. Jin, “Mixing alkali pretreated and acid pretreated biomass for cellulosic ethanol production featuring reduced chemical use and decreased inhibitory effect,” Industrial Crops and Products, vol. 124, pp. 719–725, 2018.

[25] Z. Song, G. Yang, Y. Guo, and T. Zhang, “Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion,” BioResources, vol. 7, no. 3, pp. 3223–3236, 2012 (in Thai).

[26] Z. Yuan, Y. Wen, and N. S. Kapu, “Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment,” Bioresource Technology, vol. 247, pp. 242–249, 2018.

[27] F. L. Shimizu, P. Q. Monteiro, P. H. C. Ghiraldi, R. B. Melati, F. C. Pagnocca, W. de Souza, C. Sant’Anna, and M. Brienzo, “Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem,” Industrial Crops & Products, vol. 115, pp. 62–68, 2018.

[28] A. W. Bhutto, K. Qureshi, K. Harijan , R. Abro T. Abbas, A. A. Bazmi, S. Karim, and G. Yu, “Insight into progress in pre-treatment of lignocellulosic biomass,” Energy, vol. 122, pp. 724–45, 2017.

[29] W. Wang, X. Tan, M. Imtiaz, Q. Wang, C. Miao, Z. Yuan, and X. Zhuang, “Rice straw pretreatment with KOH/urea for enhancing sugar yield and ethanol production at low temperature,” Industrial Crops and Products, vol. 170, 2021, Art. no. 113776.

[30] M. Lomjabok, N. Krasaechol, and S. Sai-Ut, “Effect of pepsin and hydrolysis time on antioxidative activity of collagenhydrolysate from chicken feet through response surface methodology,” The Journal of KMUTNB, vol. 31, no. 2, pp. 108–117, 2021 (in Thai).

[31] A. Chanpirak, P. Dumnin, and A. Hongpuay, “Optimization of oil extraction from spent coffee grounds (Coffea canephora var. robusta/ Coffea arabica) by Hexane Using Response Surface Methodology,” The Journal of KMUTNB, vol. 28, no. 4, pp. 799-811, 2018 (in Thai).

[32] N. Ratasukharom, B. Chomtee, C. Wongoutong, and S. Nidsunkid, “A comparison of missing value estimation methods for response surface design,” The Journal of KMUTNB, vol. 32, no. 3, pp. 758–769, 2020 (in Thai).

[33] C. Homkhiew, W. Boonchouytan, S. Rawangwong, and T. Ratanawilai, “Optimal manufacturing parameters of rubberwood flour/high density polyethylene composites using Box-Behnken design,” The Journal of KMUTNB, vol. 27, no. 2, pp. 315–328, 2017 (in Thai).

[34] K. Kongsom and C. Chaiyaraksa, “Remediation of sand washing water contaminated with petroleum hydrocarbon by persulfate and Sono-persulfate oxidation process,” The Journal of KMUTNB, vol. 33, no. 1, 2023 (in Thai).

[35] D. Sidiras, D. Politi, G. Giakoumakis, and I. Salapa, “Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review,” Bioresource Technology, vol. 343, 2022, Art. no. 126158.

[36] P. P. Thoresen, L. Matsakas, U. Rova, and P. Christakopoulos, “Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future,” Bioresource Technology, vol. 306, 2020, Art. no. 123189.

[37] Z. Zhou, F. Lei, P. Li, and J. Jiang “Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology,” Biotechnology and Bioengineering, vol. 115, no. 11, pp. 2683–2702, 2018.

[38] K. R. Cuilty, L. Ballinas-Casarrubias, E. R. de S. Miguel, J. de Gyves, J. C. Robles-Venzor, and G. Gonzalez- Sanchez, “Cellulose recovery from Quercus sp. sawdust using ethanosolv pretreatment,” Biomass Bioenergy, vol. 111, pp. 114–124, 2018.

[39] V.L. Pachapur, S. Kaur Brar, and Y. Le Bihan, “Integrated wood biorefinery: Improvements and tailor-made two-step strategies on hydrolysis techniques,” Bioresource Technology, vol. 299, 2020, Art. no. 122632.

[40] Z. M. Zhao, X. Meng, B. Scheidemantle, Y. Pu, Z. H. Liu, B. Z. Li, C. E. Wyman, C. M. Cai, and A. J. Ragauskas, “Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion,” Bioresource Technology, vol. 347, 2022, Art. no. 126367.

[41] T. Phorndonand, N. Boontian, C. Piasai, and M. Padri, “Enhanced methane production from cassava pulp by using alkaline hydrolysis and heat with scraps iron,” The Journal of KMUTNB, vol. 31, no. 2, 2021.

[42] O. Sarkar, U. Rova, P. Christakopoulos, and L. Matsakas, “Organosolv pretreated birch sawdust for the production of green hydrogen and renewable chemicals in an integrated biorefinery approach,” Bioresource Technology, vol. 344, 2022, Art. no. 126164.

[43] S. Anothairungrat and K. Piyamongkala, “Risk assessment of thermal hazard and reactivity of hydrogen peroxide by differential scanning calorimetry,” The Journal of KMUTNB, vol. 29, no. 2, pp. 292–301, 2019 (in Thai).

[44] S. Tangkawanit, “Color fastness and UV protection improvement of indigo dyed cotton fabrics coated with nano chitosan and zinc oxide,” The Journal of KMUTNB, vol. 30, no. 3, pp. 495–507, 2020 (in Thai).

[45] M. N. F. Norrrahim, R. A. Ilyas, N. M. Nurazzi, M. S. A. Rani, M. S. N. Atikah, and S. S. Shazleen, “Chemical pretreatment of lignocellulosic biomass for the production of bioproducts: An overview,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 588–605, 2021.

[46] R. Travaini, J. Martín-Juárez, A. Lorenzo-Hernando, and S. Bolado-Rodríguez, “Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited,” Bioresource Technology, vol. 199, pp. 2–12, 2016.

[47] R. Travaini, M. D. Otero, M. Coca, R. Da-Silva, and S. Bolado, “Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation,” Bioresource Technology, vol. 133, pp. 332–339, 2013.

[48] R. Travaini, E. Barrado, and S. Bolado-Rodríguez, “Effect of ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse,” Bioresource Technology, vol. 214, pp. 150–158, 2016.

[49] T. N. Ang, G. C. Ngoh, A. S. M. Chua, and M. G. Lee, “Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses,” Biotechnology for Biofuels, vol. 5, no. 67, 2012.

[50] J. Zhang, X. Zhang, M. Yang, S. Singh, and G. Cheng, “Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment,” Bioresource Technology, vol. 322, 2021, Art. no. 124522.

[51] M. P. Gundupalli, A. S. S. Thomas, Y.-S. Cheng, P. Tantayotai, and M. Sriariyanun, “Differential effects of inorganic salts on cellulase kinetics in enzymatic saccharification of cellulose and lignocellulosic biomass,” Bioprocess and Biosystems Engineering, vol. 44, pp. 2331–2344, 2021.

[52] M. Sriariyanun, N. Kitiborwornkul, P. Tantayotai, K. Rattanaporn, and P.-L. Show, “One-pot ionic Liquid-mediated bioprocess for pretreatment and enzymatic hydrolysis of rice straw with ionic Liquid-tolerance bacterial cellulase,” Bioengineering, vol. 9, no. 17, 2022.

[53] S. Chuetor, E. J. Panakkal, T. Ruensodsai, K. Cheenkachorn, S. Kirdponpattara, Y. -S. Cheng, and M. Sriariyanun, “Improvement of enzymatic saccharification and ethanol production from rice straw using recycled ionic liquid: The effect of anti-solvent mixture,” Bioengineering, vol. 9, no. 115, 2022.

[54] K. Cheenkachorn, T. Douzou, S. Roddecha, P. Tantayotai, and M. Sriariyanun, “Enzymatic saccharification of rice straw under influence of recycled ionic liquid pretreatments,” Energy Procedia, vol. 100, pp. 160–165, 2016.

[55] I. Mehrez, K. Chandrasekhar, W. Kim, S. H. Kim, and G. Kumar, “Comparison of alkali and ionic liquid pretreatment methods on the biochemical methane potential of date palm waste biomass,” Bioresource Technology, vol. 360, 2022, Art. no. 127505.

[56] J. Gao, L. Chen, K. Yuan, H. Huang, and Z. Yan, “Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass,” Bioresource Technology, vol. 150, pp. 352–358, 2013.

[57] X. Zhang, P. Zhu, Q. Li, and H. Xia, “Recent advances in the catalytic conversion of biomass to furfural in deep eutectic solvents,” Frontiers in Chemistry, vol. 10, 2022.

[58] A. L. Li, X.D. Hou, K. P. Lin, X. Zhang, and M. H. Fu, “Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse,” Journal of Bioscience and Bioengineering, vol. 126, no. 3, pp. 346–354, 2018.

[59] Z. Chen and C. Wan, “Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment,” Bioresource Technology, vol. 250, pp. 532–537, 2018.

[60] F. Wang, D. Shi, J. Han, G. Zhang, X. Jiang, M. Yang, Z. Wu, C. Fu, Z. Li, M. Xian, and H. Zhang, “Comparative study on pretreatment processes for different utilization purposes of switchgrass,” ACS Omega, vol. 5, no. 35, pp. 21999–2007, 2020.

[61] F. L. Shimizu, P. Q. Monteiro, P. H. C. Ghiraldi, R. B. Melati, F. C. Pagnocca, W. de-Souza, C. S. Anna, and M. Brienzo, “Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem,” Industrial Crops and Products, vol. 115, pp. 62–68, 2018.

[62] D. Sahoo, S. B. Ummalyma, A. K. Okram, A. Pandey, M. Sankar, and R.K. Sukumaran, “Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis,” Bioresource Technology, vol. 253, pp. 252–255, 2018.

[63] N. Aggarwal, P. Pal, N. Sharma, and S. Saravanamurugan, “Consecutive organosolv and alkaline pretreatment: An efficient approach toward the production of cellulose from rice straw,” ACS Omega, vol. 6, no. 41, pp. 27247–27258, 2021.

[64] M. Monção, K. Hrůzová, U. Rova, L. Matsakas, and P. Christakopoulos, “Organosolv fractionation of birch sawdust: Establishing a lignin-first biorefinery,” Molecules, vol. 26, no. 21, pp. 6754, 2021.

[65] F. L. Vaz, J. da R. Lins, B. R. Alencar, Í. B. de Abreu, E. E. Vidal, E. Ribeiro, E. V. Sampaio, R. S. Menezes, and E.D. Dutra, “Chemical pretreatment of sugarcane bagasse with liquid fraction recycling,” Renewable Energy, vol. 174, pp. 666–673, 2021.

[66] R. Muazzam, A. M. Asim, M. Uroos, N. Muhammad, and J. P. Hallett, “Evaluating the potential of a novel hardwood biomass using a superbase ionic liquid,” RSC Advances, vol. 11, no. 31, pp. 19095–19105, 2021.

[67] R. O. Almeida, A. Moreira, D. Moreira, M. E. Pina, M. G. V. S. Carvalho, M. G. Rasteiro, and J. A. F. Gamelas, “High-performance delignification of invasive tree species wood with ionic liquid and deep eutectic solvent for the production of cellulose-based polyelectrolytes,” RSC Advances, vol. 12, no. 7, pp. 3979–3989, 2022.

[68] M. P. Gundupalli, P. Tantayotai, E. J. Panakkal, S. Chuetor, S. Kirdponpattara, A. S. S. Thomas, B. K. Sharma, and M. Sriariyanun, “Hydrothermal pretreatment optimization and deep eutectic solvent pretreatment of lignocellulosic biomass: An integrated approach,” Bioresource Technology Reports, vol. 17, 2022.

[69] S. Ungwiwatkul and S. Bootdee, “Assessment of water quality in Khlong Yai River in Rayong Province by Chemical Index (CI),” The Journal of KMUTNB, vol. 32, no. 2, pp. 398–414, 2022 (in Thai).

[70] S. Waiyasusri, “Phosphate removal in wastewater by adsorption on calcium carbonate and calcium oxide from eggshell,” The Journal of KMUTNB, vol. 26, no. 3, pp. 475–486, 2016 (in Thai).

[71] C. Nualsri, S. Dangwongjaroenporn, C. Sreela-or, T. Kassanuk, and K. Phasinam, “Effect of biochar from banana peel on the stability of methane production from food waste at different organic loading rates,” The Journal of KMUTNB, vol. 31, no. 4, pp. 770–780, 2021 (in Thai).

Full Text: PDF

DOI: 10.14416/j.kmutnb.2022.09.018

ISSN: 2985-2145