การศึกษาชีพลักษณ์ของป่าพรุด้วยภาพถ่ายดาวเทียม Sentinel-2: กรณีศึกษา จังหวัดภูเก็ต
Peat Swamp Forest Phenology Based on Sentinel-2 Images: Case Study at Phuket Province
Abstract
งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาชีพลักษณ์ของป่าพรุในจังหวัดภูเก็ตด้วยภาพถ่ายดาวเทียม Sentinel-2 และประเมินความสัมพันธ์กับปัจจัยทางสภาพอากาศ ได้แก่ อุณหภูมิ ปริมาณน้ำฝน รวมทั้งความชื้นในใบไม้ (Leaf Water Content) ดัชนีพืชพรรณสำหรับการศึกษานี้มี 4 ชนิด คือ ดัชนีเน้นภาพพืชพรรณ (Enhanced Vegetation Index; EVI) ดัชนีเน้นภาพพืชพรรณแบบ 2 ช่วงคลื่น (Two-Band Enhanced Vegetation Index; EVI2) ดัชนีความต่างของพืชพรรณด้วยช่วงคลื่นแสงสีเขียว (Green Normalized Difference Vegetation Index; GNDVI) และดัชนีผลต่างพืชพรรณ (Normalized Difference Vegetation Index; NDVI) ดัชนีทั้ง 4 ชนิด ถูกนำไปคำนวณค่าเฉลี่ยรายเดือนจาก พ.ศ. 2559–2564 และปรับค่าความเรียบ (Smoothed) เพื่อปรับแก้ผลกระทบจากสัญญาณรบกวนในชั้นบรรยากาศ ผลการศึกษาพบว่า ลักษณะชีพลักษณ์ของป่าพรุสอดคล้องกับดัชนี NDVI และ GNDVI โดยให้ค่าสูงสุด 2 ช่วงเวลา คือ ช่วงเดือนสิงหาคมถึงกันยายน และสูงสุดอีกครั้งในช่วงเดือนมกราคมถึงเดือนกุมภาพันธ์ของปีถัดไป การวิเคราะห์ความสัมพันธ์ระหว่างดัชนีพืชพรรณกับปัจจัยสภาพอากาศพบว่าดัชนี EVI และ EVI2 มีความสัมพันธ์กันสูงกับอุณหภูมิ ปริมาณน้ำฝน และความชื้นในใบไม้ ในขณะที่ดัชนี NDVI และ GNDVI มีความสัมพันธ์ต่ำกับปัจจัยสภาพอากาศทั้งหมด เนื่องจากพืชอาจไม่ได้ตอบสนองต่อปัจจัยดังกล่าวอย่างทันทีทันใด การศึกษานี้สามารถใช้เป็นข้อมูลประกอบสำหรับการบริหารจัดการทรัพยากรป่าพรุที่สัมพันธ์กับช่วงเวลาหรือฤดูกาลได้
The objectives of this research are to study the phenology of peat swamp forest in Phuket province, Thailand using Sentinel-2 images and to evaluate it in correlation with climate factors: temperature, rainfall, and leaf water content. Four vegetation indices: Enhanced Vegetation Index (EVI), Two-Band Enhanced Vegetation Index (EVI2), Green Normalized Difference Vegetation Index (GNDVI), and Normalized Difference Vegetation Index (NDVI) were applied. Four indices from 2016 to 2021 were averaged into the monthly data and smoothed to reduce the noise signal from the atmosphere. The results demonstrate that NDVI and GNDVI show at the two peaks of the season: August/September and January/February of the following year. The relationships between EVI and EVI2 and temperature, rainfall, and leaf water content were significant. However, both NDVI and GNDVI show low relationships because the vegetation did not respond immediately to the factors. This research can be applied to peat swamp forest management for season or time-related protection and conservation.
Keywords
[1] M. R. C. Posa, L. S. Wijedasa, and R. T. Corlett, “Biodiversity and conservation of tropical peat swamp forests,” Bioscience, vol. 61, no. 1, pp. 49–57, 2011.
[2] C. Niyomtham and T. Santiuk, “Swamp forest in Thailand and effect from land development,” in The 23th Kasetsart University Annual Conference, 1985 (in Thai)
[3] J. Chukwamdee, A. Anansiriwat, W. Meepon, J. Jintanukun, and S. Hawanon, “The study of distribution in swamp forest Thailand,” Journal of Forest Management, vol. 1, no. 1, pp. 58–66, 1999 (in Thai)
[4] C. Rupsung, P. Sunthornhao, and W. Hoamuangkawe, “Utilization and evaluate potential of Lepironia articulata (Retz.) in Khuan Khaeng swamp forest of Kumpae village, Cha-uat district, Nakhon Si Thammarat province,” in The 49th Kasetsart University Annual Conference, 2011, pp. 62–69 (in Thai)
[5] J. Khoployklang, K. Khoployklang, V. Khoployklang, P. Rongsawat, and T. Prombanchong, “Biodiversity, Botanical characteristics and Anti-oxidative Activity of Plants in Khuan Khreng Peat swamp forest,” Rajamangala University of Technology Srivijaya, Songkhla, Thailand 2019 (in Thai).
[6] S. Rukkur and P. Visuthismajarn, “Community Potential Development in Value Added Community Production towards the Conversation of Kuan Kreng Peat Swamp Forest,” Rajamangala University of Technology Srivijaya, Songkhla, Thailand, 2017 (in Thai).
[7] R. M. Sukarna, C. Birawa, and A. Junaedi, “Mapping above-ground carbon stock of secondary peat swamp forest using forest canopy density model landsat 8 oli-tirs: A case study in central kalimantan indonesia,” Environment and Natural Resources Journal, vol. 19, no. 2, pp. 165–175, 2021.
[8] N. Si and T. Province, “Value of carbon stock in aboveground biomass of peat swamp forest, Nakhon Si Thammarat province,” RMUTP Research Journal, vol. 8, no. 2, pp. 2014, 2014 (in Thai).
[9] N. Payakka and S. Wongsai, “Historical land use and land cover changes, 1989–2011, in Phuket, Thailand,” the 1st Annual PSU Phuket International Conference 2012, Phuket, Thailand, 2013.
[10] Natural Resources and Environmental Policy and Planning, “Biodivesity of Maikaow swamp forest,” Bangkok, Thailand, 2002 (in Thai).
[11] Office of Tourism and Sports Phuket, “Phuket Tourism Strategic Plan in 2018-2021,” Phuket, Thailand (in Thai).
[12] A. Kongpramern, “The development of electronic books for primary students to learn about the swamp forests at Mai Khaw village, in Phuket province,” Phuket Rajabhat University, Phuket, Thailand, 2013 (in Thai)
[13] C. Li, Y. Zou, J. He, W. Zhang, L. Gao, and D. Zhuang, “Response of vegetation phenology to the interaction of temperature and precipitation changes in qilian mountains,” Remote Sensing, vol. 14, no. 5, pp. 1–24, 2022.
[14] V. K. Prasad, K. V. S. Badarinath, and A. Eaturu, “Spatial patterns of vegetation phenology metrics and related climatic controls of eight contrasting forest types in India – analysis from remote sensing datasets,” Theoretical and Applied Climatology, vol. 107, pp. 95–107, 2007.
[15] V. Songsom, W. Koedsin, R. J. Ritchie, and A. Huete, “Mangrove phenology and environmental drivers derived from remote sensing in Southern Thailand,” Remote Sensing, vol. 11, no. 8, pp. 1–25, 2019.
[16] K. Mongkolsawat and C. Mongkolsawat, “An approach to using vegetation and water indices of multi-temporal satellite data for drought monitoring through the phenological state of tropical monsoon forest,” Journal of Remote Sensing and GIS Association of Thailand, vol. 10, no. 2, 2009 (in Thai).
[17] J. Pastor-Guzman, J. Dash, and P. M. Atkinson, “Remote sensing of mangrove forest phenology and its environmental drivers,” Remote Sensing of Environment, vol. 205, pp. 71–84, 2018.
[18] M. Ding, Q. Guan, L. Li, H. Zhang, C. Liu, and L. Zhang, “Phenology-based rice paddy mapping using multi-source satellite imagery and a fusion algorithm applied to the Poyang Lake plain, Southern China,” Remote Sensing, vol. 12, no. 6, 2020.
[19] M. Salinero-Delgado, J. Estévez, L. Pipia, V. P. Gómez, and J. Verrelst, “Monitoring cropland phenology on google earth engine using gaussian process regression,” Remote Sensing, vol. 14, no. 1, pp. 1–25, 2022.
[20] N. Younes, T. D. Northfield, K. E. Joyce, S. W. Maier, N. C. Duke, and L. Lymburner, “A novel approach to modelling mangrove phenology from satellite images: A case study from Northern Australia,” Remote Sensing, vol. 12, no. 24, pp. 1–24, 2020.
[21] T. Sakamoto, M. Yokozawa, H. Toritani, M. Shibayama, N. Ishitsuka, and H. Ohno, “A crop phenology detection method using timeseries MODIS data,” Remote Sensing Environ., vol. 96, no. 3–4, pp. 366–374, 2005.
[22] I. Dronova, S. Taddeo, K. S. Hemes, S. H. Knox, A. Valach, P. Y. Oikawa, K. Kasak, D. D. Baldocchi, “Remotely sensed phenological heterogeneity of restored wetlands: linking vegetation structure and function,” Agricultural and Forest Meteorology, vol. 296, 2021.
[23] P. Uang-aree, S. Prayochmee, and A. Thangthong, “Vegetation monitoring of Kham Chanot swamp forest in dry season using normalized differential vegetation index,” Udon Thani Rajabhat University Journal of Sciences And Technology, vol. 6, no. 1, pp. 17–28, 2018 (in Thai).
[24] Z. Jiang, A. R. Huete, K. Didan, and T. Miura, “Development of a two-band enhanced vegetation index without a blue band,” Remote Sensing of Environment, vol. 112, no. 10, pp. 3833–3845, 2008.
[25] A. A. Gitelson, Y. J. Kaufman, and M. N. Merzlyak, “Use of a green channel in remote sensing of global vegetation from EOS- MODIS,” Remote Sensing of Environment, vol. 58, no. 3, pp. 289–298, 1996.
[26] H. Yang, C. Xi , X. Zhao, P. Mao, Y. Shi, T. He, and Z. Li, “Measuring the urban land surface temperature variations under Zhengzhou city expansion using landsat-like data,” Remote Sensing, vol. 12, no. 5, 2020.
[27] Y. Feng, C. Gao, X. Tong, S. Chen, Z. Lei, and J. Wang, “Spatial patterns of land surface temperature and their influencing factors: A case study in Suzhou, China,” Remote Sensing, vol. 11, no. 2, 2019.
[28] C. Funk, P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla, G. Husak, J. Rowland, L. Harrison, A. Hoell, and J. Michaelsen, “The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes,” Scientific Data, vol. 2, pp. 1–21, 2015.
[29] S. McFeeters, “The use of Normalised Difference Water Index (NDWI) in the delineation of open water features,” International Journal of Remote Sensing, vol. 17, no. 7, pp. 1425–1432, 1996.
[30] P. Jönsson and L. Eklundh, “TIMESAT - A program for analyzing time-series of satellite sensor data,” Computers and Geosciences, vol. 30, pp. 833–845, 2004.
[31] K. Jaroenjit, K. Rhimpeng, and K. Lieadpratom, “Spatial distribution of Melaleuca cajuputi powell forest and potential of natural resource for local community utilization in the East of Thailand,”Faculty of Geo-Informatics Burapha University, Chonburi, Thailand, 2017 (in Thai).
[32] Y. Zang, X. Chen, J. Chen, Y. Tian, Y. Shi, X. Cao, and X. Cui, “Remote sensing index for mapping canola flowers using modis data,” Remote Sensing, vol. 12, no. 23, pp. 1–19, 2020.
[33] D. M. Johnson, A. Rosales, R. Mueller, C. Reynolds, R. Frantz, A. Anyamba, E. Pak, and C. Tucker, “Usa crop yield estimation with modis ndvi: Are remotely sensed models better than simple trend analyses?,” Remote Sensing, vol. 13, no. 21, pp. 1–16, 2021.
[34] B. Bera, S. Saha, and S. Bhattacharjee, “Estimation of Forest Canopy Cover and Forest Fragmentation Mapping Using Landsat Satellite Data of Silabati River Basin (India),” KN - Journal of Cartography and Geographic Information, vol. 70, no. 4, pp. 181–197, 2020.
[35] H. P. La, Y. D. Eo, J. H. Kim, C. Kim, M. W. Pyeon, and H. S. Song, “Analysis of correlation between canopy cover and vegetation indices,” International Journal of Digital Content Technology and its Applications, vol. 7, no. 11, pp. 10–17, 2013.
DOI: 10.14416/j.kmutnb.2024.03.013
ISSN: 2985-2145