Page Header

Numerical Integral Equation Methods of Average Run Length on EWMA Control Chart for Seasonal Moving Average Process with Exogenous Variables

Chinnawat Muangkaeo, Kanita Petcharat

Abstract


งานวิจัยนี้นำเสนอวิธีการประมาณค่าความยาวรันเฉลี่ย สำหรับแผนภูมิควบคุมค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักแบบเลขชี้กำลัง โดยวิธีสมการปริพันธ์เชิงตัวเลข ซึ่งในงานวิจัยนี้ศึกษาทั้งหมด 4 วิธี ได้แก่ วิธีกฎค่ากลาง วิธีกฎสี่เหลี่ยมคางหมู วิธีกฎของเกาส์ และวิธีกฎของซิมป์สัน เมื่อข้อมูลของกระบวนการมีตัวแบบการเฉลี่ยเคลื่อนที่แบบมีฤดูกาลที่มีตัวแปรภายนอก ทำการเปรียบเทียบวิธีการประมาณโดยพิจารณาค่าความยาวรันเฉลี่ยที่ประมาณได้จากวิธีสมการปริพันธ์เชิงตัวเลขทั้ง 4 วิธี นอกจากนี้ยังทำการเปรียบเทียบประสิทธิภาพของวิธีการประมาณทั้ง 4 วิธี โดยใช้เวลาที่ในการประมวลผล ผลการวิจัยพบว่า ค่าความยาวรันเฉลี่ยที่ได้จากการประมาณโดยวิธีสมการปริพันธ์เชิงตัวเลข ได้แก่ วิธีกฎค่ากลาง วิธีกฎเกาส์ และวิธีกฎซิมป์สันมีค่าเท่ากัน แต่วิธีกฎสี่เหลี่ยมคางหมูมีค่าแตกต่างจากวิธีอื่นเล็กน้อย และเมื่อพิจารณาจากเวลาในการประมวลผลพบว่า วิธีกฎค่ากลาง และวิธีกฏสี่เหลี่ยมคางหมูใช้เวลาประมวลผลน้อยที่สุด โดยใช้เวลาไม่เกิน 1–2 วินาที ส่วนวิธีกฎของเกาส์ และวิธีกฏของซิมป์สัน ใช้เวลาในการประมวลผลมากกว่าซึ่งใช้เวลาในการประมวลผลประมาณ 5–8 วินาที

The purpose of this research is to evaluate the method for estimating the average run length (ARL) of an exponentially weighted moving average control chart using a numerical Integral equation when the process data is a seasonal moving average model with exogenous variables. Four methods are employed: the midpoint rule, the trapezoidal rule, the Gaussian rule, and Simpson's rule. The average run length values obtained using four different methods are compared. The CPU times required to perform the ARL evaluation are also compared. The result indicates that the ARL values obtained using the midpoint rule, the Gaussian rule, and Simpson's rule are very similar. However, the value obtained using the trapezoidal rule is less dissimilar. Additionally, when CPU time is considered, the midpoint and trapezoidal rules are the quickest, about 1–2 seconds. However, Gauss's and Simpson's rules require more CPU time, approximately 5–8 seconds.


Keywords



[1] D.C. Montgomery, Introduction to Statistical Quality Control, 6th ed, Hoboken: Wiley, pp. 400–428, 2009.

[2] J. M. Lucas and M .S. Saccucci, “Exponentially weighted moving average controls schemes: Properties and enhancements,” Technometrics, vol. 32, no.1, pp. 1–29, 1990.

[3] S. Sukparungsee and S. A. A. Novikov, “Analytical approximations for detection of a change-point in case of light-tailed distributions,” Journal of Quality Measurement and Analysis, vol. 4, no. 2, pp. 49–56, 2008.

[4] W. Suriyakat, Y. Areepong, S. Sukparungsee, and G. Mititelu, “Analytical method of average run length for trend exponential AR(1) processes in EWMA procedure,” IAENG International Journal of Applied Mathematics, vol. 42, no. 4, pp. 250–253, 2012.

[5] K. Petcharat, “An analytical solution of ARL of EWMA procedure for SAR(P)L process with exponential white noise,” Far East Journal of Mathematical Sciences, vol. 98, no. 1, pp. 8311–843, 2015.

[6] P. Phanthuna, Y. Areepong, and S.Sukparungsee, “Numerical integral equation methods of average run length on modified ewma control chart for exponential AR(1) process,” in Proceedings of the International Multi Conference of Engineers and Computer Scientists, 2018.

[7] R. Sunthornwat and Y. Areepong, “Average run length on CUSUM control chart for seasonal and non-seasonal moving average processes with exogenous variables,” Symmetry, vol. 12, no. 1, pp. 173, 2020.

[8] K. Petcharat, “The performance of EWMA control chart for MAX(1,r) process,” Lecture Notes in Engineering and Computer Science: in Proceedings of The International MultiConference of Engineers and Computer Scientists 2021, pp 111–115.

[9]. K. Petcharat, “The effectiveness of CUSUM control chart for trend stationary seasonal autocorrelated data,” Thailand Statistician, vol. 20, no. 2, pp. 475–488, 2022 (in Thai).

Full Text: PDF

DOI: 10.14416/j.kmutnb.2024.03.010

ISSN: 2985-2145