การปรับแก้ความคลาดเคลื่อนปริมาณน้ำฝนจากแบบจำลอง WRF-CFSR โดยวิธี EOF ภาคเหนือตอนบนของประเทศไทย
Precipitation Bias Correction of WRF-CFSR Model by EOF Method Over Upper Northern Thailand
Abstract
ระบบแบบจำลองภูมิอากาศเป็นงานที่มีความท้าทายและมีความยาก เนื่องจากการประมวลผลจากแบบจำลองมีความไม่แน่นอนซึ่งเกิดจากหลายปัจจัยส่งผลต่อความคลาดเคลื่อนของผลการจำลองทั้งในเชิงพื้นที่และเวลา ฉะนั้นในการศึกษาครั้งนี้จึงมีวัตถุประสงค์ในการประยุกต์ใช้วิธีการหรือเทคนิคการปรับแก้ความคลาดเคลื่อนสำหรับปริมาณน้ำฝนจากแบบจำลองสภาพอากาศระดับภูมิภาค WRF-CFSR และประเมินประสิทธิภาพวิธีการปรับแก้ความคลาดเคลื่อนปริมาณน้ำฝนจากแบบจำลองสภาพอากาศระดับภูมิภาค WRF-CFSR โดยในการศึกษาได้เลือกใช้วิธีการ Empirical Orthogonal Function (EOF) ในการปรับแก้ความคลาดเคลื่อนปริมาณน้ำฝนแบบรายเดือน โดยศึกษาในพื้นที่ภาคเหนือตอนบนของประเทศไทยทั้งหมด 18 สถานี ครอบคลุมตั้งแต่ปี ค.ศ. 1980-2010 (31ปี) และใช้ข้อมูลตรวจวัดแบบกริด (APHRODITE CRU และGPCP) ในการเปรียบเทียบผลร่วมกับข้อมูลแบบจำลองสภาพอากาศระดับภูมิภาค WRF-CFSR จากการศึกษาพบว่าวิธีปรับแก้ EOF สามารถลดค่าความแตกต่างระหว่างค่าปริมาณน้ำฝนผิดปกติและค่าปริมาณน้ำฝนปกติเฉลี่ยให้มีความใกล้เคียงกับค่าความแตกต่างของข้อมูลตรวจวัด และในการตรวจสอบความถูกต้องด้วยค่ารากที่สองของค่าความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE) พบว่าวิธีการปรับแก้ความคลาดเคลื่อน EOF ยังไม่สามารถลดค่าความคลาดเคลื่อนของปริมาณน้ำฝนได้ แต่อย่างไรก็ตามจากการตรวจสอบความถูกต้องด้วยค่าสัมประสิทธิ์สหสัมพันธ์ (r) พบว่าวิธี EOF สามารถรักษาความต่อเนื่องเชิงพื้นที่ของปริมาณน้ำฝนรายเดือนได้ โดยเฉพาะการปรับแก้ข้อมูลแบบจำลองสภาพอากาศระดับภูมิภาค WRF-CFSR และข้อมูลตรวจวัดกริด GPCP มีค่า r อยู่ในช่วง 0.52 ถึง 0.97 ซึ่งเป็นค่าความสัมพันธ์หลังปรับแก้ที่ดีที่สุด
Climate modeling system is a challenging and difficult task. Because uncertainty of the model processing is caused by many factors that influence the discrepancy of model output in both spatial and time. Therefore, in this study, the objective of this study was to apply methods or techniques for precipitation bias correction method from the WRF-CFSR regional climate model and to evaluate the efficiency of precipitation bias correction methods from the WRF-CFSR regional climate model. This study was selected the Empirical Orthogonal Function (EOF) for the monthly precipitation bias correction method in the upper northern region of Thailand, all 18 stations covering from 1980-2010 (31 years) and use observation grids data (APHRODITE CRU and GPCP) to compare the results with the WRF-CFSR regional climate model data. The result that the EOF correction method can reduce the difference between the precipitation anomaly and mean precipitation to be closer to the difference of the observation data. For validation with the Root Mean Square Error (RMSE) was found that the EOF bias correction method was unable to reduce the precipitation error. However, the validation with correlation coefficient values, the EOF method can maintain the spatial continuity of monthly precipitation. In particular, the correction of the WRF-CFSR regional climate model data and the GPCP grid observation data had r values 0.52 to 0.97 which is the best correction correlation.
Keywords
[1] J. Nels, The Effects of Topography on the Climate. United States, 2017.
[2] W. Wanwisad, Climate Change: Effects to Thailand. Bangkok, 2015 (in Thai).
[3] J. P. Evans and D. Argüeso, “Guidance on the use of bias corrected data,” University of New South Wales, Australia, 2014.
[4] L. Feudale and A. M. Tompkins, “A simple bias correction technique for modeled monsoon precipitation applied to West Africa,” Geophysical Research Letters, vol. 38, no. 3, pp. 1–5, 2011.
[5] C. Chotamonsak, E. P. Salathé, J. Kreasuwan, S. Chantara, and K. Siriwitayakorn, “Projected climate change over Southeast Asia simulated using a WRF regional climate model,” Atmospheric Science Letters, vol. 12, no. 2, pp. 213–219, April 2011.
[6] Y. Wang, L. R. Leung, J. McGregor, D. Lee, W. Wang, Y. Ding, and F. Kimura, “Regional climate modeling: Progress, challenges, and prospects,” Journal of the Meteorological Society of Japan, vol. 82, no. 6, pp. 1599–1628, 2004.
[7] X. Yang, E. F. Wood, J. Sheffield, L. Ren, M. Zhang, and Y. Wang, “Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models,” Journal of Hydrometeorology, vol. 19, no. 3, pp. 609–623, 2018.
[8] T. Thodsang, A. Chankarn, S. Kitiraj, K. Sinonpakorn, and S. Boonyaarunneth, “Analysis and accuracy of the weather research and forecasting model (WRF) for climate change prediction in Thailand,” in Proceedings 19th NCCE, 2014, pp. 1–8 (in Thai).
[9] S. Saha, S. Nadiga, C. Thiaw, J. Wang, W. Wang, Q. Zhang, H. M. Van den Dool, H.-L. Pan, S. Moorthi, D. Behringer, D. Stokes, M. Peña, S. Lord, G. White, W. Ebisuzaki, P. Peng, and P. Xie, “The NCEP climate forecast system,” Journal of Climate, vol. 19, no. 15, pp. 3483–3517, 2006.
[10] S. Saha, S. Moorthi, H.-Lu Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y.-Tai Hou, H.-ya Chuang, H.- Ming, H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. Van Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. van den Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J.-Kyung Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C.-Zhi Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R. W. Reynolds, G. Rutledge, and M. Goldberg, “The NCEP Climate Forecast System Reanalysis,” Bulletin of the American Meteorological Society, vol. 91, no. 8, pp. 1015–1058, 2010.
[11] S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.-Tai Hou, H.-ya Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M. Peña Mendez, H. van den Dool, Q. Zhang, W. Wang, M. Chen, and E. Becker, “The NCEP climate forecast system version 2,” Journal of Climate, vol. 27, no. 6, pp. 2185–2208, 2014.
[12] C. Chotamonsak, O. Wiranwetchayan, D. Lapyai, and P. Thanadolmethaphorn, Seasonal Climate Forecasting Model for Rice Yield Prediction Model for Thailand. Chiangmai, 2018 (in Thai).
[13] K. Kusreesakul, “Spatio-temporal rainfall changes in thailand and their connection with regional and global climate variability,” M.S. thesis, Faculty of Enviromental Management, Prince of Songkla University, 2009 (in Thai).
[14] A. Limsakul and W. Paengkaew, “Empirical orthogonal function (EOF) technique and ocean variability analysis,” Burapha Science Journal, vol. 18, no. 2, pp. 313–320, 2013 (in Thai).
[15] A. Yatagai, APHRODITE’s Water Resources project. Kyoto, Japan, 2012.
[16] I. Harris, Release Notes for CRU TS v4.02. University of East Anglia Norwich, 2018.
[17] Q. Sun, C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-Lin Hsu, “A review of global precipitation data sets: Data sources, estimation, and intercomparisons,” Reviews of Geophysics, vol. 56, no. 1, pp. 79–107, 2018.
[18] A. Pendergrass, The Climate Data Guide: GPCP (Monthly): Global Precipitation Climatology Project. United States, 2014.
[19] A. Hannachi, I. T. Jolliffe, and D. B. Stephenson, “Empirical orthogonal functions and related techniques in atmospheric science: A review,” International Journal of Climatology, vol. 27, no. 9, pp. 1119–1152, 2007.
[20] J. V. Ratnam, T. Doi, and S. K. Behera, “Improving austral summer precipitation forecasts of SINTEX-F2 coupled ocean–atmosphere general circulation model over southern Africa by simple bias correction techniques,” Atmospheric Science Letters, vol. 20, no. 3, pp. 1–8, 2019.
DOI: 10.14416/j.kmutnb.2022.07.004
ISSN: 2985-2145