กำลังและความคงทนของดินลูกรังผสมเถ้าลอยจีโอโพลีเมอร์สำหรับบล็อกประสานไม่รับน้ำหนัก
Strength and Durability of Lateritic Soil Mixed with Fly Ash Geopolymer as a Non-bearing Interlocking Block
Abstract
งานวิจัยนี้ศึกษากำลัง และความคงทนของดินลูกรังผสมเถ้าลอยจีโอโพลีเมอร์ โดยใช้อัตราส่วนดินลูกรังต่อเถ้าลอยเท่ากับ 3:1 อัตราส่วนโซเดียมซิลิเกต (Na2SiO3) ต่อโซเดียมไฮดรอกไซด์ (NaOH) เท่ากับ 80:20, 70:30 และ 50:50 ความเข้มข้นของ NaOH มีค่าเท่ากับ 1, 3 และ 5 โมลาร์ (M) และอายุบ่ม 7, 14, 28, 60 และ 90 วัน โดยทำการทดสอบการบดอัด กำลังอัดแกนเดียว กำลังดัด และความคงทนที่สภาวะเปียกสลับแห้งของดินลูกรังผสมเถ้าลอยจีโอโพลีเมอร์ พบว่าอัตราส่วน Na2SiO3:NaOH และความเข้มข้นของ NaOH มีผลต่อหน่วยน้ำหนักแห้ง กำลังอัดแกนเดียว กำลังดัด และความคงทนของตัวอย่าง หน่วยน้ำหนักแห้งสูงสุด และปริมาณสารกระตุ้นที่เหมาะสมของตัวอย่างมีค่าเท่ากับ 19.01 kN/m3 และร้อยละ 18 ตามลำดับ กำลังอัดและกำลังดัดสูงสุดของตัวอย่างพบที่อัตราส่วน Na2SiO3:NaOH เท่ากับ 80:20 และความเข้มข้นของ NaOH เท่ากับ 5 M ที่อายุบ่ม 28 วัน มีค่าเท่ากับ 6.55 และ 2.70 MPa ตามลำดับ ค่ากำลังอัดสูงกว่าเกณฑ์มาตราฐานประมาณ 2.62 เท่า ปริมาณ NaOH ส่งผลกระทบต่อกำลังอัด การดูดซึมน้ำ และร้อยละการสูญเสียน้ำหนักของตัวอย่าง ปริมาณ NaOH ที่สูงขึ้นสามารถชะซิลิก้าได้ดีเมื่อได้รับความร้อน ซึ่งทำให้ตัวอย่างมีความแน่นมากขึ้น
This research studies the strength and durability of lateritic soil mixed with fly ash geopolymer. The following parameters, i.e. the ratio of lateritic soil (LS) to fly ash (FA) at 3 : 1; the ratio of sodium silicate (Na2SiO3) to sodium hydroxide (NaOH) at 80 : 20, 70 : 30, and 50 : 50; the concentration of NaOH of at 1, 3 and 5 Molar (M); and curing time of 7, 14, 28, 60, and 90 days were investigated in this study. The compaction test, the unconfined compressive strength (UCS), the flexural strength (FS), and the wet–dry cycles of LS mixed with FA geopolymer were evaluated. The test results showed that Na2SiO3 : NaOH ratio and the concentration of NaOH had an effect on dry unit weight, UCS, and FS. The maximum dry unit weight and the optimum liquid alkaline content of the sample were 19.01 kN/m3 and 18% respectively. The maximum UCS and FS of the sample of Na2SiO3 : NaOH at the ratio of 80 : 20 and the concentration of NaOH of 5 Molar at 28 days curing were 6.55 and 2.70 MPa respectively. This maximum UCS was higher than the standard of non-bearing interlocking block at 2.62 times. The amount of NaOH had an effect on UCS, water absorption and weight loss of the sample. The higher NaOH content could leached silica when sample was heated, causing more dense matrix structure.
Keywords
[1] J. Davidovits, Geopolymer Chemistry and Applications. Morrisville: Lulu Enterprises Inc., 2008.
[2] S. Hanjitsuwan, P. Chindaprasirt, and K. Pimraksa, “Electrical conductivity and dielectric property of fly ash geopolymer pastes,” International Journal of Minerals, Metallurgy and Materials, vol. 18, no. 1, pp. 94–99, 2011.
[3] S. Lueangkamchon, “Geopolymer material,” Thailand Concrete Association Journal, vol. 3, 2008 (in Thai).
[4] K. Wongkhum, C. Suksiripattanapong, S. Tiyasangthong, and J. Thumrongvut, “Compressive strength and microstructure of lateritic soil-used coffee grounds stabilized fly ash geopolymer,” UBU Engineering Journal, vol. 11, no. 2, pp. 65–73, 2018 (in Thai).
[5] C. Suksiripattanapong, S. Horpibulsuk, P. Chanprasert, P. Sukmak, and A. Arulrajah, “Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge,” Construction and Building Materials, vol. 82, pp. 20–30, 2015.
[6] M. Hoy, R. Rachan, S. Horpibulsuk, A. Arulrajah, and M. Mirzababaei, “Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement – Fly ash geopolymer,” Construction and Building Materials, vol. 144, pp. 624–634, 2017.
[7] N. Banthia and R. Gupta, “Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete,” Cement and Concrete Research, vol. 36, no. 7, pp. 1263–1267, 2006.
[8] M.W. Ussin, A. Nur Farhayu, M.A.R. Bhutta, and A.S.L. Nor Hasanah, “Study on dry-wet cyclic resistance of geopolymer mortars using blended ash from agro-industrial waste,” presented at Third International Conference on Sustainable Construction Materials and Technologies (SCMT3), Kyoto, Japan, August 18–21, 2013.
[9] The Community Product Standard, Annual Book of TISI Standard TISI 602/2547, Bangkok, Thailand, 2004 (in thai).
[10] Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, Annual Book of ASTM Standard ASTM C618, 2015.
[11] Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, Annual Book of ASTM Standard ASTM D2166, 2000.
[12] Standard Test Method for Flexural Strength of Soil-Cement Using Simple Beam with Third-Point Loading, Annual Book of ASTM Standard ASTM D1635, 2009.
[13] Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures, Annual Book of ASTM Standard ASTM D599-03, 2012.
[14] P. Duxson, A. Fernández-Jiménez, J. Provis, and G.C. Lukey, “Geopolymer technology: The current state of the art,” Journal of Materials Science, vol. 42, no. 9, pp. 2917–2933, 2007.
[15] U. Rattanasak and P. Chindaprasirt, “Influence of NaOH solution on the synthesis of fly ash geopolymer,” Minerals Engineering, vol. 22, no. 12 pp. 1073–1078, 2009.
[16] Y. Aygörmez, O. Canpolat, M.M. Al-mashhadani, and M. Uysal, “Elevated temperature, freezingthawing and wetting - drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites,” Construction and Building Materials, vol. 235, pp. 117502, 2020.
[17] S. Kolias, V.K. Rigopoulou, and A. Karahalios, “Stabilisation of clayey soils with high calcium fly ash and cement,” Cement & Concrete Composites, vol. 27, pp. 301–313, 2005.
[18] F. Brue, C.A. Davy, F. Skoczylas, N. Burlion, and X. Bourbon, “Effect of temperature on the water retention properties of two high performance concretes,” Cement and Concrete Research, vol. 42, no. 2, pp. 384–396, 2014.
[19] J. Jiang and Y. Yuan, “Relationship of moisture content with temperature and relative humidity in concrete,” Construction and Building Materials, vol. 65, pp. 685–692, 2013.
[20] V. Sata, A. Sathonsaowaphak, and P. Chindaprasirt, “Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack,” Cement and Concrete Research, vol. 34, no. 5, pp. 700-708, 2012.
[21] T. Bakharev, “Durability of geopolymer materials in sodium and magnesium sulfate solutions,” Cement and Concrete Research, vol. 35, no. 6, pp. 1133–1246, 2005.
DOI: 10.14416/j.kmutnb.2021.05.027
ISSN: 2985-2145