Page Header

Effect of Pepsin and Hydrolysis Time on Antioxidative Activity of CollagenHydrolysate from Chicken Feet through Response Surface Methodology

Mattayanee Lomjabok, Nisanarth Krasaechol, Samart Sai-Ut

Abstract


เท้าไก่ใช้เป็นแหล่งของคอลลาเจนและเจลาตินที่มีคุณภาพสูง ซึ่งนำมาผลิตเป็นโปรตีนไฮโดรไลเสตที่สามารถออกฤทธิ์ทางชีวภาพเป็นการทำให้ได้ผลิตภัณฑ์ที่มีมูลค่าเพิ่มมากขึ้น โดยการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของปริมาณเปปซิน(0.02–5% w/w) ร่วมกับระยะเวลาในการย่อย (2–8 ชั่วโมง) เพื่อผลิตคอลลาเจนไฮโดรไลเสตจากเท้าไก่ต่อความสามารถในการยับยั้งการเกิดออกซิเดชันด้วยวิธีพื้นที่ผิวตอบสนอง (Response Surface Methodology) ซึ่งออกแบบการทดลองแบบ Central Composite Design (CCD) จากผลการวิจัยพบว่า ปริมาณเปปซินร่วมกับระยะเวลาที่ใช้ในการย่อยมีความสัมพันธ์กับปริมาณโปรตีนและปริมาณโปรตีนที่ไม่ชอบน้ำโดยจะเพิ่มมากขึ้นเมื่อเพิ่มปริมาณเปปซิน อีกทั้งยังสัมพันธ์กับความสามารถในการต้านอนุมูลอิสระด้วยวิธี ABTS ที่จะเพิ่มมากขึ้นในระดับหนึ่งและลดลงเมื่อปริมาณเปปซินและระยะเวลาในการย่อยเพิ่มขึ้น และเมื่อนำมาทวนสอบความแม่นยำของสมการจะเห็นได้ว่าทั้ง 3 ค่าตอบสนองมี Error (%) ต่ำ เนื่องจากค่าตอบสนองที่ได้จากการทดลองมีค่าใกล้เคียงกับการทำนาย โดยสภาวะที่เหมาะสมที่สุดในการผลิตคอลลาเจนไฮโดรไลเสตจากเท้าไก่ให้มีความสามารถในการต้านอนุมูลอิสระด้วยวิธี ABTS มากที่สุด คือการใช้เปปซิน 2.08% (w/w) ร่วมกับใช้ระยะเวลาในการย่อย 4.48 ชั่วโมง

Chicken feet contain high quality collagen and gelatin, which can produce proteins hydrolysate with bioactivity, resulting in higher value-added products. The objective of this study was to study the effect of pepsin content (0.02–5% w/w) in combination with digestion time (2–8 hours) to produce collagen hydrolysate from chicken feet with antioxidative activities through Response Surface Methodology (RSM). The experiment was Central Composite Design (CCD). The results showed that pepsin concentration and digestion time were related to the protein content and the hydrophobicity protein content. Increasing in pepsin concentration made protein content and hydrophobicity value of collagen hydrolysate higher. In addition, ABTS radical scavenging activity increased up to a certain level, and then, decreased when the pepsin concentration and digestion time increased more. To confirm the validity of the statistical model, all responses had low error value (%) because the observation values were close to the predicted values. Optimization by RSM showed that using 2.08% (w/w) pepsin with the digestion time of 4.48 hours could produce collagen hydrolysate with the highest ABTS radical scavenger activity.


Keywords



[1] A. K. Chakka, A. Muhammed, P. Z. Sakhare, and N. Bhaskar, “Poultry processing waste as an alternative source for mammalian gelatin: Extraction and characterization of gelatin from chicken feet using food grade acids,” Waste and Biomass Valorization, vol. 8, no. 8, pp. 2583– 2593, 2017.

[2] A. Lasekan, F. Abu Bakar, and D. Hashim, “Potential of chicken by-products as sources of useful biological resources,” Waste Management, vol. 33, no. 3, pp. 552–565, 2013.

[3] L. Du and M. Betti, “Chicken collagen hydrolysate cryoprotection of natural actomyo-sin: Mechanism studies during freezethaw cycles and simulated digestion,”Food Chemistry, vol. 211, pp. 791–802, 2016.

[4] M. M. Schmidt, R. C. P. Dornelles, R. O. Mello, E. H. Kubota, M. A. Mazutti, A. P. Kempka, and I. M.Demiate, “Collagen extraction process,” International Food Research Journal, vol. 23, no. 3, pp. 913–922, 2016.

[5] H. Song and B. Li, “Beneficial effects of collagen hydrolysate: a review on recent developments,” Biomedical Journal of Scientific & Technical Research, vol. 1, no. 2, pp. 1–4, 2017.

[6] S. Siriamornpun, Antioxidants in Food, Bangkok: Odeon store, 2014 (in Thai).

[7] S. Jantad, “Dried protein hydrolysate powder from chicken breast meat with enzymatic hydrolysis using as ingredient in prototype beverage product,” M.S. thesis, Department of Product Development, Faculty of Agro Industry, Kasetsart University, 2014 (in Thai).

[8] R. R. da Silva, “Enzymatic synthesis of protein hydrolysates from animal proteins: explo-ring microbial peptidases,” Frontiers in Microbiology, vol. 9, no. 735, 2018.

[9] S.J. Lee, K. H. Kim, Y.-S. Kim, E.-K. Kim, J.-W. Hwang, B. O. Lim, S.-H. Moon, B.-T. Jeon, Y.-J. Jeon, C.-B. Ahn, and P.-J. Park, “Biological activity from the gelatin hydro-lysates of duck skin by-products,” Process Biochemistry, vol. 47, no. 7, pp. 1150–1154, 2012.

[10] P. Mokrejs, R. Gál, D. Janacova, M. Plskova, and M. Zacharová, “Chicken paws by-products as an alternative source of proteins,” Oriental Journal of Chemistry, vol. 33, no. 5, pp. 2209– 2216, 2017.

[11] N. D. Mokhtar, W. A. Wahab, N. A. Hamdan, H. A. Hadi, M. S. A. Hassan, and N. M. Bunnori, “Extraction optimization and characteri-zation of collagen from chicken (Gallus gallus domesticus) feet,” presented at the 5th International Conference on Chemical, Agricultural, Biological and Environmental Sciences (CAFES-17), Kyoto, Japan, April 18-21, 2017.

[12] O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the folin phenol reagent,” Journal of Biological Chemistry, vol. 193, pp. 265–275, 1951.

[13] S. Yarnpakdee, S. Benjakul, H. G. Kristinsson, and H. Kishimura, “Antioxidant and sen-sory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one- and two-step hydroly-sis,”Journal of Food Science and Technology, vol. 52, no. 6, pp. 3336–3349, 2015.

[14] I. Chelh, P. Gatellier, and V. Santé-Lhoutellier, “Technical note: A simplified procedure for myofibril hydrophobicity determination,” Meat Science, vol. 74, no. 4, pp. 681–683, 2006.

[15] N. K. Vate and S. Benjakul, “Antioxidative activity of melanin-free ink from splendid squid (Loligo formosana),” International Aquatic Research, vol. 5, no. 9, pp. 1–12, 2013.

[16] N. Bumrungsart and K. Duangmal, “Optimization of enzymatic hydrolysis condition for producing black gram bean (Vigna mungo) hydrolysate with high antioxidant activity,” Food and Applied Bioscience Journal, vol. 7. no. 3, pp. 105– 117, 2019 (in Thai).

[17] L. M. Magalhães, M. A. Segundo, S. Reis, and J. L. F. C. Lima, “Methodological aspects about in vitro evaluation of antioxidant properties,” Analytica Chimica Acta, vol. 613, no. 1, pp. 1–19, 2008.

[18] S. Pvln, V. S. Kiranmayi, P. Swathi, L. Jeyseelan, S. Mm, and A. Bitla, “Comparison of two analytical methods used for the measurement of total antioxidant sta-tus,” Journal of Antioxidant Activity, vol. 1, no. 1, pp. 22–28, 2015.

[19] R. Mendes, C. Cardoso, and C. Pestana, “Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectro-photometric test,” Food Chemistry, vol. 112, no. 4, pp. 1038–1045, 2009.

[20] V. Silva, K. Park, and M. Hubinger, “Optimization of the enzymatic hydrolysis of mussel meat,” Journal of Food Science, vol. 75, no. 1, pp. C36–42, 2010.

[21] A. Justina, “Bioactive properties of salmon skin protein hydrolysate,” M.S. thesis, Department of Bioresource Engineering, McGill university, 2012.

[22] J. Ahn, M. J. Cao, Y. Q. Yu, and J. R. Engen, “Accessing the reproducibility and specificity of pepsin and other aspartic proteases,” Biochimica et biophysica acta, vol. 1834, no. 6, pp. 1222–1229, 2013.

[23] K. A. Al-Shamsi, P. Mudgil, H. M. Hassan, and S.Maqsood, “Camel milk protein hydrolysates with improved technofunctional properties and enhanced antioxidant potential in in vitro and in food model systems,” Journal of Dairy Science, vol. 101, no. 1, pp. 47–60, 2018.

[24] A. P. F. Corrêa, D. J. Daroit, R. Fontoura, S. M. M. Meira, J. Segalin, and A. Brandelli, “Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxi-dant and angiotensinconverting enzyme inhibitory activities,” Peptides, vol. 61, pp. 48–55, 2014.

[25] C. Cui, M. Zhao, B. Yuan, Y. Zhang, and J. Ren, “Effect of pH and pepsin limited hydrolysis on the structure and functional properties of soybean protein hydroly-sates,” Journal of food science, vol. 78, no. 12, pp. C1871–C1877, 2013.

[26] C. Sonklin, N. Laohakunjit, and O. Kerdchoechuen, “Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates,” PeerJ, vol. 6, e5337, 2018.

[27] Z. Karami, S. H. Peighambardoust, J. Hesari, and B. Akbari-Adergani, “Response surface methodology to optimize hydrolysis parameters in production of antioxidant peptides from wheat germ protein by alcalase digestion and identification of antioxidant peptides by LC- MS/MS,” Journal of Agricultural Science and Technology, vol. 21, no. 4, pp. 829–844, 2019.

[28] Y. Zhuang and L. Sun, “Preparation of reactive oxygen scavenging peptides from tilapia (Oreochromis niloticus) skin gelatin: optimization using response surface methodology,” Journal of Food Science, vol. 76, no. 3, pp. C483–C489, 2011.

[29] Z. Zheng, Y. Huang, R. Wu, L. Zhao, C. Wang, and R. Zhang, “Response surface optimization of enzymatic hydrolysis of duck blood corpuscle using commercial proteases,” Poultry Science, vol. 93, no. 10, pp. 2641–2650, 2014.

[30] M. Rudzinska, E. Flaczyk, R. Amarowicz, E. Wasowicz, and J. Korczak, “Antioxidative effect of crackling hydrolysates during frozen storage of cooked pork meatballs,” European Food Research and Technology, vol. 224, pp. 293–299, 2007.

[31] P. Chuesiang, “Protein hydrolysate from tilapia and perch frame : Antioxidant and ace - inhibitor properties,” M.S. thesis, Department of Mathematics, Faculty of Science, Chulalongkorn University, 2011 (in Thai).

[32] S. N. Mazloomi-Kiyapey, A. Sadeghi-Mahoonak, E. Ranjbar-Nedamani, and E. Nourmo-hammadi, “Production of antioxidant peptides through hydrolysis of medicinal pumpkin seed protein using pepsin enzyme and the evaluation of their functional and nutritional properties,” ARYA Atheroscler, vol. 15, no. 5, pp. 218–227, 2019.

[33] M. Ovissipour, K. A. Abedian, A. Motamedza-degan, and R. Nazari, “Optimization of enzymatic hydrolysis of visceral waste proteins of Yellowfin Tuna (Thunnus albacares),” Food and Bioprocess Technology, vol. 5, pp. 696–705, 2010.

Full Text: PDF

DOI: 10.14416/j.kmutnb.2020.12.005

ISSN: 2985-2145