กำลังอัดและโครงสร้างทางจุลภาคของจีโอพอลิเมอร์ที่ใช้เถ้าถ่านหินและซิลิกาที่สกัดจากเถ้าแกลบ
Compressive Strength and Microstructure of Geopolymer Using Fly Ash and Extracted Silica from Rice Husk Ash
Abstract
งานวิจัยนี้ศึกษากำลังอัดและโครงสร้างทางจุลภาคของจีโอพอลิเมอร์ที่ได้จากเถ้าถ่านหินและซิลิกาที่สกัดจากเถ้าแกลบซึ่งเถ้าแกลบถูกนำมาสกัดซิลิกาโดยการใช้กรดไฮโดรคลอริค (HCl) และแปรเปลี่ยนค่าอุณหภูมิการเผาแกลบในช่วง 100–800 องศาเซลเซียส นำเถ้าแกลบผสมเถ้าถ่านหินในอัตราส่วน 10 : 90 โดยน้ำหนัก และใช้สารละลายโซเดียมไฮดรอกไซด์ความเข้มข้น14 โมลาร์ ผสมจีโอพอลิเมอร์แบ่งเป็น 2 ลักษณะ คือ ลักษณะที่ 1 นำซิลิกาที่สกัดจากเถ้าแกลบผสมกับเถ้าถ่านหิน แล้วผสมกับสารละลายโซเดียมไฮดรอกไซด์ และลักษณะที่ 2 นำซิลิกาที่สกัดจากเถ้าแกลบผสมกับสารละลายโซเดียมไฮดรอกไซด์แล้วผสมกับเถ้าถ่านหิน ทดสอบกำลังอัดของวัสดุ ศึกษาโครงสร้างทางจุลภาคด้วยเทคนิค SEM และ XRD การศึกษาพบว่า จีโอพอลิเมอร์เพสต์จากเถ้าแกลบที่เผาที่อุณหภูมิ 200 องศาเซลเซียส ให้ค่ากำลังอัดสูงที่สุด วิธีผสมลักษณะที่ 1 ให้กำลังอัดที่สูงกว่าวิธีผสมลักษณะที่ 2 เนื่องจากมีค่าความเป็นด่างมากพอที่ชะซิลิกาและอะลูมินาจากวัสดุตั้งต้นเพื่อทำปฏิกิริยาจีโอพอลิเมอร์ไรเซชัน ลักษณะโครงสร้างทางจุลภาคเกิดสารประกอบใหม่ที่เกิดการจากทำปฏิกิริยาของเถ้าถ่านหินและซิลิกาที่สกัดจากเถ้าแกลบ
This research aimed to study compressive strength and microstructure of geopolymer using fly ash and extracted silica from rice husk ash. Silica was extracted from Rice Husk ash (RH) by hydrochloric acid treatment and burnt in a furnace with temperature between 100–800°C. RH was mixed with Fly Ash (FA) at a ratio of 10 : 90 by weight of binder and 14 M NaOH was used in mixing geopolymer pastes. There were 2 types of mixing geopolymer pastes. First, extracted silica from RH was mixed with FA, then, 14 M NaOH was added (GEO-SEP). Second, extracted silica from RH was mixed with 14 M NaOH then, FA was added (GEO-MIX). The compressive strength of geopolymer pastes were investigated. Microstructures were characterized by SEM and XRD. The results showed that geopolymer pastes made from extracted silica after RH was burnt at 200°C provided the highest compressive strength. GEO-SEP method had higher compressive strength than those of GEO-MIX. It was due to GEO-SEP method having a higher alkali concentration to leach silica and alumina from FA to be strating the starting materials for geopolmerization reaction than GEO-MIX method. The microstructure showed new compounds of geopolymer which was a result of the reaction between FA and extracted silica from RH.
Keywords
[1] J. G. S. Jaarsveld and J. S. J. Deventer, “Effect the alkali metal activator on the properties of fly ash based geopolymers,” Industrial & Engineering Chemistry Research, vol. 38, no. 10, pp. 3932–3941, 1999.
[2] W. Sun, Y. Zhang, W. Lin, and Z. Liu, “In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM,” Cement and Concrete Research, vol. 34, no. 34, pp. 935–940, 2004.
[3] J. Davidovits, Geopolymer Chemistry and Application. France: Institute Geopolymer, 2008, pp. 585.
[4] K. Srituilerng, “A study on the properties of fly ash with rice husk ash geopolymer,” M.S. thesis, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, 2007 (in Thai).
[5] J. Wongpa, K. Kiattikomol, C. Jaturapitakkul, and P. Chindaprasirt, “Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete,” Materials and Design, vol 31, no. 10, pp. 4748–4754, 2010.
[6] P. Kamhangrittirong, P. Suwanvitaya, P. Suwanvitaya, and P. Chindaprasirt, “Synthesis and properties of high calcium fly ash based geopolymer for concrete,” presented at Applications, 36th Conference on Our World in Concrete & Structures Singapore, August 14–16, 2011.
[7] H. Jian, J. Yuxin, Z. Jianhong, Y. Yuzhen, and Z. G. Zhang “Synthesis and characterization of red mud and rice husk ash-based geopolymer composites,” Cement and Concrete Composites, vol. 37, pp 108–118. 2013.
[8] B. Chatveera and N. Makul. “Properties of geopolymer mortar produced from fly ash and rice husk ash: Influences of fly ash-rice husk ash ratio and Na2SiO3-NaOH ratio under curing by microwave energy,” KMUTT Research & Development Journal, vol. 35, no. 3, pp. 299–310, 2012 (in Thai).
[9] H.H. Un, S. Kaushik, M. Waltraud, S Kriven, and S. Musil, “Rice husk ash as a silica source in a geopolymer developments in strategic materials and computational design V,” presented at the 38th International Conference on Advanced Ceramics and Composites, Daytona Beach, Florida, 2014.
[10] X. Weiting, T. Y. Lo, and S. A. Memon, “Microstructure and reactivity of rich husk ash,” Construction and Building Materials, vol. 29. pp. 541–547, 2012.
[11] N. Yalcin and V. Sevinc, “Studies on silica obtained from rice husk,” Ceramics International, vol. 27, no. 2. pp. 219–224, 2001.
[12] D. Donanta, F. F. Jaka, W. S. Frans, and N. H. Alfina, “Synthesis of amorphous silica from rice husk ash: Comparing HCl and CH3COOH acidification methods and various alkaline concentrations,” International Journal of Technology, vol. 11, no.1, pp. 200–208, 2020.
[13] K. Somna. “Synthetic acid rain resistance on geopolymer mortar based fly ash and rice husk ash,” presented at the 19th National Convention on Civil Engineering, Khon Kaen, Thailand, 2014 (in Thai).
[14] K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, and P. Chindaprasirt, “NaOH-activated ground fly ash geopolymer cured at ambient temperature,” Fuel, vol. 90, no. 6, pp. 2118–2124, 2011 (in Thai).
[15] T. Chareerat and P. Chindaprasirt, “Preliminary study of geopolymer from selected size of Mae Moh fly ash,” presented at the 1st National Conference on Concrete and Geopolymer, Khon Kaen, Thailand, 2005 (in Thai).
[16] P. Chindaprasirt, C. Jaturapitakkul, and T. Sinsiri, “Effect of fly ash fineness on microstructure of blended cement paste,” Construction and Building Materials, vol. 21, no. 7, pp. 1534–1541, 2007.
[17] Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use Mineral Admixture in Portland Cement Concrete, ASTM C618-08a, 2010.
[18] P. Chindaprasirt and C. Jaturapitakkul, Cement Pozzolan and Concrete. 7th ed. Bangkok: Thai Concrete Assocoation, 2010 (in Thai).
[19] M. Celestine, O. T. Audu, G. Msughter, and T. R. Dooshima, “Variation of some physical properties of rice husk ash refractory with temperature,” International Journal of Science and Research (IJSR), vol. 2, no.9, pp. 26–29, 2013.
[20] M. M. Haslinawati, K. A. Matori, Z. A. Wahab, H. A. A. Sidek, and A. Zainal, “Effect of temperature on ceramic from rice husk ash,” International Journal of Basic & Applied Sciences IJBAS-IJENS, vol. 9, no. 9. pp. 22–25. 2009.
[21] M. F. Souzaa, P. S. Batistaa, I. Regiania, J. B. L. Liboriob, and D. P. F. Souza, “Rice hull-derived silica: Applications in Portland cement and mullite whiskers,” Materials Research, vol. 3, no. 2, pp. 25–30, 2000.
[22] V. P. Della, I. Kuhm, and H. Dachamir, “Rice husk ash as an alternate source for active silica production,” Materials Letters, vol. 57, no. 4, pp. 818–821, 2002.
[23] G. Liang, H. Zhu, Z. Zhang, and Q. Wu, “Effect of rice husk ash addition on the compressive strength and thermal stability of metakaolin based geopolymer,” Construction and Building Materials, vol. 222, pp. 872–881, 2019.
[24] M. Davinder, “Silica from ash: A valuable product from waste material,” Resonance, vol. 2, no. 7, pp. 64–66, 1997.
DOI: 10.14416/j.kmutnb.2020.12.010
ISSN: 2985-2145