Acetic Acid as a Carbon Source from Fermentation of Biogas Excess Sludge for the Removal of Nutrients in Enhanced Biological Phosphorus Removal Processes
Abstract
สารอินทรีย์คาร์บอน ไนโตรเจน และฟอสฟอรัสในน้ำเสียเป็นปัญหามลพิษทางน้ำที่สำคัญ ซึ่งการควบคุมระบบกำจัดฟอสฟอรัสทางชีวภาพแบบเพิ่มพูนจำเป็นต้องมีการเติมแหล่งคาร์บอนจากภายนอก และสารเคมีที่เป็นด่าง ทำให้เสียค่าใช้จ่ายในการซื้อสารเคมีเพิ่มขึ้น ดังนั้นงานวิจัยนี้จึงมุ่งศึกษาถึงการกำจัดฟอสฟอรัส ไนโตรเจน และซีโอดีในระบบกำจัดฟอสฟอรัสทางชีวภาพของระบบบำบัดน้ำเสียชุมชน โดยทดลองเติมกรดแอซีติกที่ได้จากการหมักตะกอนส่วนเกินของระบบผลิตก๊าซชีวภาพ และควบคุมความเป็นด่างจากการเติมมูลสุกร และโซเดียมไบคาร์บอเนตที่สัดส่วนเท่ากับ 2 : 1 กำหนดให้ค่าฟอสฟอรัสเท่ากับ 25 มก./ล. ไนโตรเจนในรูปของทีเคเอนเท่ากับ 15 มก./ล. และซีโอดี (กรดแอซีติกที่ได้จากการหมักตะกอนส่วนเกินแบบไร้ออกซิเจน) เท่ากับ 380 มก./ล. อายุตะกอนเท่ากับ 60 วัน ผลการทดลองเมื่อใช้แหล่งคาร์บอนจากการหมักตะกอนส่วนเกินแบบไร้ออกซิเจนพบว่า เมื่อเดินระบบจนเข้าสู่สภาวะคงที่ (91 วัน) การกำจัดฟอสฟอรัส ไนโตรเจน และสารอินทรีย์คาร์บอนมีแนวโน้มเพิ่มสูงขึ้น (ร้อยละ 6.92, 20.72 และ 0.74) เมื่อเทียบกับระบบที่ใช้มูลสุกรอย่างเดียวในการควบคุมความเป็นด่าง ซึ่งจากการทำสมดุลมวลพบว่า มีปริมาณของฟอสฟอรัสที่สะสมในเซลล์จุลินทรีย์ร้อยละ 52.32 แสดงว่าปริมาณกรดแอซีติกจากการหมักตะกอนส่วนเกินของระบบผลิตก๊าซชีวภาพสามารถใช้ทดแทนกรดแอซีติกจากสารเคมี ซึ่งสามารถนำมาใช้เป็นแนวทางในการควบคุมระบบบำบัดน้ำเสียชุมชน และช่วยลดต้นทุนการเดินระบบได้
High level of organic carbon, nitrogen, and phosphorus are serious wastewater problems. The control of enhanced biological phosphorus removal processes requires the addition of external carbon sources and alkaline chemicals that can increase the cost of additional chemicals. This research aims to study the efficiency of phosphorus nitrogen and COD in enhanced biological phosphorus removal of municipal wastewater treatment plant. Acetic acid from fermented excess sludge of biogas processes was used as carbon source with controlled alkaline by pig manure and sodium bicarbonate at ratio 2 : 1 in the EBPR. In the experiments, 25 mg/L of phosphorus and 380 mg/L of COD were used with 60 days of sludge retention time. The results showed a steady state after 91 days. The phosphorus, nitrogen and carbon removal has tended to increase by 6.92, 20.72 and 0.74 percent compared to the systems that use only pig manure to control the alkalinity. Mass balance showed that phosphorus in cell was 52.32%. The EBPR process is able to use acetic acid from the fermented excess sludge from biogas processes as the substitutes of the chemicals. Therefore, the mass balance is potential to be a guideline for controlling the municipal wastewater treatment system and reduce the operational cost.
Keywords
[1] Ministry of natural resources and environment. Domestic wastewater treatment system. [Online] (in Thai). Available: http://mews.onep.go.th/default.aspx
[2] Pollution control department, ministry of natural resources and environment. (2016, March). Wastewater quality standards. [Online] (in Thai). Available: http://www.pcd.go.th/info_serv/reg_std_water04.html
[3] J. Guerrero, A. Guisasola, and J. A. Baeza, “Controlled crude glycerol dosage to prevent EBPR failures in C/N/P removal WWTPs,” Chemical Engineering Journal, vol. 271, pp. 114–127, 2015.
[4] Y. Wei, S. Wang, B. Ma, X. Li, Z. Yuan, Y. He, and Y. Peng, “The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system,” Bioresource Technology, vol. 170, 175–182, 2014.
[5] R. Wang, Y. Peng, Z. Cheng, and N. Ren, “Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system,” Bioresource Technology, vol. 169, pp. 307–312, 2014.
[6] L. Welles, W. D. Tian, S. Saad, B. Abbas, C. M. Lopez-Vazquez, C. M. Hooijmans, M. C. M. van Loosdrecht, and D. Brdjanovic, “Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake,” Water Research, vol. 83, pp. 354–366, 2015.
[7] M. F. R. Zuthi, W. S. Guo, H. H. Ngo, L. D. Nghiem, and F. I. Hai, “Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes,” Bioresource Technology, vol. 139, pp. 363–374, 2013.
[8] X. Zheng, P. Sun, J. Han, Y. Song, Z. Hu, H. Fan, and S. Lv, “Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR) – A mini-review,” Process Biochemistry, vol. 49, no. 12, pp. 2207–2213, 2014.
[9] N. Boontian, “Using the activated sludge model 2D (ASM2D) to understand and predict the phosphorus accumulating organisms mechanish in enhanced biological phosphorus removal in relation to distegrated sludge as a carbon source,” Ph.D. dissertation, Department of Applied Sciences, Cranfield University, Cranfield, Beds, 2012.
[10] P. Y. Wong, M. P. Ginige, A. H. Kaksonen, R. Cord-Ruwisch, D. C. Sutton, and K. Y. Cheng, “Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: Effect of dissolved oxygen,” Water Science and Technology, vol. 72, no. 7, pp. 1147–1154, 2015.
[11] H. Ma, X. Chen, H. Liu, H. Liu, and B. Fu, “Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?,” Waste Management (Oxford), vol. 48, pp. 397–403, 2016.
[12] J. Hao and H. Wang, “Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature,” Bioresource Technology, vol. 175, pp. 367–373, 2015.
[13] X. Liu, L. Xiang, Y. Song, F. Qian, and X. Meng, “The effects and mechanism of alkalinity on the phosphate recovery from anaerobic digester effluent using dolomite lime,” Environmental Earth Sciences, vol. 73, no. 9, pp. 5067–5073, 2015.
[14] D. Yin, W, Liu, N. Zhai, Y. Feng, G. Yang, X. Wang, and X. Han, “Production of bio-energy from pig manure: A focus on the dynamics change of four parameters under sunlight-dark conditions,” PLOS One, vol. 10, no. 5, pp. 1–12, 2015.
[15] O. H. Andole, Z. Lei, Z. Zhang, J. Raude, and C. Kanali, “Optimization of biogas production in dry anaerobic digestion of swine manure by the use of alkalinity index to monitor a prototype cylindrical digester,” International Journal of Sustainable Energy, vol. 5, no. 1, pp. 32–37, 2017.
[16] X. Li, H. Chen, L. Hu, L. Yu, Y. Chen, and G. Gu, “Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal,” Environmental Science & Technology, vol. 45, pp. 1834–1839, 2011.
[17] L. Deng, P. Zheng, Z. Chen, and Q. Mahmood, “Improvement in post-treatment of digested swine wastewater,” Bioresource Technology, vol. 99, no. 8, pp. 3136–3145, 2008.
[18] L. C. W. MacLean, S. Beauchemin, and P. E. Rasmussen, “Lead speciation in house dust from Canadian urban homes using EXAFS, Micro-XRF, and Micro-XRD,” Environmental Science & Technology, vol. 45, no. 13, pp. 5491–5497, 2011.
[19] S. Lee, S. Rao, M. Kim, E. I. Janghorban, and C. Yoo, “Assessment of environmental data quality and its effect on modelling error of full-scale plants with a closed-loop mass balancing,” Environmental Technology, vol 36, no. 24, pp. 3253–3261, 2015.
[20] A. Zhu, J. Guo, B. J. Ni, S. Wang, Q. Yang, and Y. Peng, “A novel protocol for model calibration in biological wastewater treatment,” Scientific Reports, vol. 5, no. 1, pp. 1–10, 2015.
[21] C. M. Lopez-Vazquez, A. Oehmen, C. M. Hooijmans, D. Brdjanovic, H. J. Gijzen, Z. Yuan, and M. C. M. van Loosdrecht, “Modeling the PAO–GAO competition: Effects of carbon source, pH and temperature,” Water Research, vol. 43, no. 2, 450–462, 2009.
[22] A. Oehmen, G. Carvalho, C. M. Lopez-Vazquez, M. C. M. van Loosdrecht, and M. A. M. Reis, “Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms,” Water Research, vol. 44, no. 17, pp. 4992–5004, 2010.
[23] C. Piasai, N. Boontian, T. Phondon, and M. Padri, “Mass balances of cod nitrogen and phosphorus in enhanced biological nutrient removal processes,” Science and Technology Journal, vol. 28, no. 6, pp. 1029–1048, 2020 (in Thai).
[24] APHA, AWWA, WPCF, A. D Eaton, and M. Ann H. Franson, Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington DC, USA, 2005.
[25] N. Frison, S. Di Fabio, C. Cavinato, P, Pavan, and F. Fatone, “Best available carbon sources to enhance the via-nitrite biological nutrients removal from supernatants of anaerobic co-digestion,” Chemical Engineering Journal, vol. 215–216, pp. 15–22, 2013.
[26] A. Soares, P. Kampas, S. Maillard, E. Wood, J. Brigg, M. Tillotson, S. A. Parsons, and E. Cartmell, “Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal,” Journal of Hazardous Materials, vol. 175, no. 1–3, pp. 733–739, 2010.
[27] M. Komorowska-Kaufman, H. Majcherek, and E. Klaczyński, “Factors affecting the biological nitrogen removal from wastewater,” Process Biochemistry, vol. 41, no. 5, pp. 1015–1021, 2006.
[28] C. Piasai, N. Boontian, U. Yingchon, and H. A. Pyae, “Efficiency enhancement of biological phosphorus removal with difference carbon sources,” EIT Engineering Journal of Research and Development, vol. 28, no. 2, pp. 41–52, 2017 (in Thai).
[29] O. Nowak, A. Franz, K. Svardal, V, Muller, and V. Kuhn, “Parameter estimation for activated sludge models with the help of mass balances,” Water Science Technology, vol. 39, no. 4, pp. 113–120, 1999.
[30] A. A. H. Azzouz, N. A. Naas, and K. M. Darwish, “Physicochemical characterization of the sewage sludge from guarchia wastewater treatment plant in benghazi-libya evaluation of the organic composition,” MOJ Bioorganic & Organic Chemistry, vol. 1, no. 2, pp. 30–48, 2017.
[31] J. Schade, K. Macneill, S. Thomas, C. Mcneely, J. Welter, J. M. Hood, M. Goodrich, M. E. Power, and J. Finlay, “The stoichiometry of nitrogen and phosphorus spiraling in heterotrophic and autotrophic streams,” Freshwater Biology, vol. 56, no. 3, pp. 424–436, 2010.
[32] H. Hauduc, T. Wadhawan, B. Johnson, C. Bott, M. Ward, and I. Takács, “Incorporating sulfur reactions and interactions with iron and phosphorus into a general plant-wide model,” Water Science and Technology, vol. 79, no. 1, pp. 26–34, 2019.
[33] V. Eleni, M. Paraschos, and A. Alexander, “Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification,” Water Research, vol. 39, pp. 4101–4109, 2005.
[34] P. Racho, “Investigation of downflow hanging sponge (DHS) system using bacterial and fungal cultures as a post treatment for the UASB effluent of a tapioca starch wastewater,” Ph.D. dissertation, Department of Environmental Engineering, Suranaree University of Technology, Nakhon Ratchasima, 2009 (in Thai).
[35] P. S. Barker and P. L. Dold, “COD and nitrogen mass balances in activated sludge systems,” Water Research, vol. 29, no. 2, pp. 633–643, 1995.
[36] Z. Yuan, A. Oehmen, and P. Ingildsen, “Control of nitrate recirculation flow in predenitrification systems,” Water science and technology, vol. 45, no. 4–5, pp. 29–36, 2002.
[37] T. Y. Pai, T. J. Wan, Y. P. Tsai, C. J. Tzeng, H. H. Chu, Y. S. Tsai, and C. Y. Lin, “Effect of sludge retention time on nitrifiers’ biomass and Kinetics in an anaerobic/oxic process,” CLEAN - Soil, Air, Water, vol. 38, no. 2, pp. 167–172, 2010.
[38] B. Acevedo, L. Borrás, A. Oehmen, and R. Barat, “Modelling the metabolic shift of polyphosphate-accumulating organisms,” Water Research, vol. 65, pp. 235–244, 2014.
[39] P. H. Hoang, H. T. Nguyen, T. T. Tran, T. T. Tran, L. P. Do, and T. N. C. Le, “Isolation and selection of nitrifying bacteria with high biofilm formation for treatment of ammonium polluted aquaculture water,” Journal of Vietnamese Environment, vol. 8, no. 1, pp. 33–40, 2016.
[40] S. Thammaporn, “The application of the integrated system between Downflow Hanging Sponge (DHS) that uses fungi and bacteria as microorganisms to treat wastewater with high carbohydrate contamination,” M.S. thesis, Department of Environmental Engineering, Suranaree University of Technology, Nakhon Ratchasima, 2012 (in Thai).
[41] Y. Chen, Y. Liu, Q. Zhou, and G. Gu, “Enhanced phosphorus biological removal from wastewater—effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture,” Biochemical Engineering Journal, vol. 27, no. 1, pp. 24–32, 2005.
[42] R. Tasli, N. Artan, and D. Orhon, “The influence of different substrates on enhanced biological phosphorus removal in a sequencing batch reactor,” Water Science and Technology, vol. 35, no. 1, pp. 75–80, 1997.
[43] M. Carvalheira, A. Oehmen, G. Carvalho, M. Eusébio, and M. A. M. Reis, “The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms,” Water Research, vol. 66, pp. 296–307, 2014.
[44] M. Carvalheira, A. Oehmen, G. Carvalho, and M. A. M., Reis, “The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs),” Water Research, vol. 64, pp. 149–159, 2014.
[45] C. Filipe, G. T. Daigger, and L. G. Jr, “Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorusaccumulating organisms at different pHs,” Biotechnology and Bioengineering, vol. 76, no. 1, pp. 32–43, 2001.
[46] J. K. Lee, C. K. Choi, K. Lee, and S. B. Yim, “Mass balance of nitrogen, and estimates of COD, nitrogen and phosphorus used in microbial synthesis as a function of sludge retention time in a sequencing batch reactor system,” Bioresource Technology, vol. 99, pp. 7788–7796, 2008.
[47] H. Jasna, T. Darko, B. Hanife, and O. Yüksel, “Influence of support materials on phosphate removal by the pure culture of Acinetobacter calcoaceticus,” Food Technology and Biotechnology, vol. 41, no. 4, pp. 331–338, 2003.
[48] E. G. Maite, A. S. Reda, A. Irini, O. Basma, V. S. Per, B. K. Dimitar, and Z. Yifeng, “High efficient ethanol and VFA production from gas fermentation: Effect of acetate, gas and inoculum microbial composition,” Biomass and Bioenergy, vol. 105, pp. 32–40, 2017.
DOI: 10.14416/j.kmutnb.2021.03.003
ISSN: 2985-2145