Evaluating and Ranking the Fuel Briquettes from Agricultural Residues Using the Virtual Cross–Efficiency Method
การวัดประสิทธิภาพและจัดลำดับความสำคัญของเชื้อเพลิงอัดแท่งจากวัสดุเหลือใช้ทางการเกษตรโดยใช้วิธีประสิทธิภาพแบบไขว้เสมือน
Abstract
การวัดประสิทธิภาพและจัดลำดับความสำคัญวัสดุชีวมวลสำหรับใช้ในการผลิตเชื้อเพลิงอัดแท่งเป็นแนวคิดที่ดีในการใช้ทรัพยากรทางการเกษตรให้เกิดประโยชน์สูงสุดสำหรับการแก้ไขปัญหาการขาดแคลนพลังงานของประเทศ อย่างไรก็ตามการวัดประสิทธิภาพของเชื้อเพลิงอัดแท่งแต่ละชนิดจะต้องพิจารณาปัจจัยหรือเกณฑ์ที่เกี่ยวข้องหลายอย่างพร้อมกัน ซึ่งปัญหานี้เป็นส่วนหนึ่งของปัญหาการตัดสินใจแบบหลายเกณฑ์ที่มีความซับซ้อนและยุ่งยากในการประเมิน งานวิจัยนี้เป็นการนำเสนอวิธีการวิเคราะห์แบบล้อมกรอบข้อมูล และวิธีประสิทธิภาพแบบไขว้เสมือนในการวัดประสิทธิภาพและการจัดลำดับความสำคัญของเชื้อเพลิงอัดแท่งแต่ละชนิดตามลำดับ ลำดับแรกคุณสมบัติที่สำคัญหรือเกณฑ์ในการประเมินเชื้อเพลิงอัดแท่งจำเป็นต้องถูกกำหนด เช่น ค่าความร้อน ปริมาณเถ้า ค่าความชื้น และปริมาณสารระเหย จากนั้นเทคนิคการวิเคราะห์แบบล้อมกรอบข้อมูลถูกใช้ในการวัดประสิทธิภาพของเชื้อเพลิงอัดแท่งแต่ละชนิด สุดท้ายวิธีประสิทธิภาพแบบไขว้เสมือนถูกมาประยุกต์ใช้สำหรับการจัดลำดับความสำคัญของเชื้อเพลิงอัดแท่งแต่ละชนิด วิธีการที่นำเสนอได้ถูกทดสอบกับงานวิจัยที่เกี่ยวข้องจำนวน 2 ตัวอย่าง ผลการศึกษาพบว่าวิธีที่นำเสนอมีประสิทธิภาพที่ดีในการจัดลำดับความสำคัญของวัสดุชีวมวลสำหรับการแปรรูปเป็นเชื้อเพลิงอัดแท่ง โดยการทดสอบค่าสัมประสิทธิ์สหสัมพันธ์สเปียร์แมนระหว่างวิธีที่นำเสนอกับวิธีการจัดอันดับความสำคัญอื่นๆ พบว่าวิธีที่นำเสนอนั้นมีค่าระดับความสอดคล้องสูงมาก (ค่า r > 0.95) ดังนั้น วิธีที่นำเสนอสามารถใช้เป็นแนวทางในการวัดประสิทธิภาพและจัดลำดับความสำคัญของเชื้อเพลิงอัดแท่งแต่ละชนิดที่มีปัจจัยหลายอย่างพร้อมกันได้
Evaluating and ranking the biomass materials for fuel briquettes is a good idea to optimize agricultural resources to address the nation's energy shortage problem. However, in measuring the efficiency of each fuel briquette, several relevant factors or criteria must be considered at the same time. This problem is one of the multi-criteria decision-making problems that are complex and difficult to assess. This research presents the data envelopment analysis and the virtual cross-efficiency method to measure the efficiency and ranking of each fuel briquette, respectively. First, the important properties or criteria for evaluating fuel briquettes must be determined, such as calorific value, ash content, moisture content and volatile matter. The data envelopment analysis was then used to measure the efficiency of each fuel briquette. Finally, the virtual cross-efficiency method was utilized to rank each fuel briquette. The proposed method was tested with two related studies. The results showed that the proposed method was highly effective in ranking biomass materials for processing into fuel briquettes. By testing Spearman’s correlation between the proposed method and the other ranking methods, it was found that the proposed method has a very high level of conformity (r value > 0.95). Therefore, it can be used as a guide to measure the efficiency and ranking each fuel briquette with multiple factors at the same time.
Keywords
[1] R. Phutteesakul, The production of charcoal briquette by coconut shell and cassava rhizome, Thesis, Srinakharinwirot University, Thailand. 2010. (in Thai)
[2] T. Tantisattayakul, S. Phongkasem, P. Phooyar and P. Taibangury, Community-based renewable energy from biomass briquettes fuel from coconut leaf, Thai Science and Technology Journal, 2015, 23(3), 418-431. (in Thai)
[3] www.dede.go.th/ewt_dl_link.php?nid=54484. (Accessed on 4 April 2022)
[4] https://weben.dede.go.th/webmax/content/biomass-database-potential-thailand. (Accessed on 4 April 2022)
[5] K. Boonchom and N. Chaisompan, Study of charcoal briquette from longan wood, Naresuan Phayao Journal, 2020, 13(2), 51-56. (in Thai)
[6] W. Markphan, K. Suttara, J. Nukeaw and U. Tiprung, The attribute of the energy of fuel briquette from mangosteen peel and tubber wood, Burapha Science Journal, 2021, 26 (3), 1371-1389. (in Thai)
[7] R. Anantanukulwong, R. Chemae and N. Sareanu, Production of Charcoal from Agricultural Residues, YRU Journal of Science and Technology, 2019, 4(1), 47-53. (in Thai)
[8] H.A. Ajimotokan, A.O. Ehindero, K.S. Ajao, A.A. Adeleke, P.P.Ikubanni and Y.L.Shuaib-Babatab, Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates, Scientific African, 2019, 6, e00202.
[9] N. Wichapa, P. Khokhajaikiat and K. Chaiphet, Aggregating the results of benevolent and aggressive models by the CRITIC method for ranking of decision-making units: a case study on seven biomass fuel briquettes generated from agricultural waste, Decision Science Letters, 2020, 10(1), 79-92.
[10] A. Karasana, E. Ilbahar, S. Cebi and C. Kahraman, Customer-oriented product design using an integrated neutrosophic AHP & DEMATEL & QFD methodology, Applied Soft Computing, 2022, 118 , 108445.
[11] A. Bilbao-Terol, M. Arenas-Parra, V. Cañal-Fernández and J. Antomil-Ibiasa, Using TOPSIS for assessing the sustainability of government bond funds, Omega, 2014, 49, 1-17.
[12] G. Zhu, J. Ma and J. Hu, A fuzzy rough number extended AHP and VIKOR for failure mode and effects analysis under uncertainty, Advanced Engineering Informatics, 2022, 51, 101454.
[13] A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 1978, 2(6), 429-444.
[14] M. Afzalinejad, Evaluating radial efficiency considering environmental factors: A generalization of classical DEA, Measurement, 2021, 179, 109497.
[15] T.R. Sexton, R.H. Silkman and A.J. Hogan, Data envelopment analysis: Critique and extensions, New Directions for Evaluation, 1986, 32, 73-105.
[16] J. Doyle and R. Green, Efficiency and cross-efficiency in DEA: Derivations, meanings and uses, The Journal of the Operational Research Society, 1994, 45(5), 567-578.
[17] Y. Wang, K. Chi and Y. Lou, Cross-efficiency evaluation based on ideal and anti-ideal decision making units, Expert Systems with Applications, 2011, 38(8), 10312-10319.
[18] M.J. Farrell, The measurement of productive efficiency, Journal of the Royal Statistical Society. Series A: Statistics in Society, 1957, 120(3), 253-290.
[19] R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale in efficiencies in data envelopment analysis, Management Science, 1984, 30(9), 1078-1092.
[20] C. Wei, L. Chen, R. Li and C. Tsai, Exploration of efficiency underestimation of CCR model: Based on medical sectors with DEA-R model, Expert Systems with Applications, 2011, 38(4), 3155-3160.
[21] J. Sun, J. Wu and D. Guo, Performance ranking of units considering ideal and anti-ideal DMU with common weights, Applied Mathematical Modelling, 2013, 37(9),
6301-6310.
[22] A. Fazlollahi, and U. Franke, Measuring the impact of enterprise integration on firm performance using data envelopment analysis, International Journal of Production Economics, 2018, 200, 119-129.
[23] P. Fu, Z. Zhan and C. Wu, Efficiency Analysis of Chinese Road Systems with DEA and Order Relation Analysis Method: Externality Concerned, Procedia - Social and Behavioral Sciences, 2013, 96, 1227-1238.
[24] Y. Fan, B. Bai, Q. Qiao, P. Kang, Y. Zhang and J. Guo, Study on eco-efficiency of industrial parks in China based on data envelopment analysis, Journal of Environmental Management, 2017, 192, 107-115.
[25] C. Wang, X. Nguyen and Y. Wang, Automobile industry strategic alliance partner selection: the application of a hybrid DEA and grey theory model, Sustainability, 2016, 8(2), 173.
[26] H. Shi, Y. Wang and X. Zhang, A cross-efficiency evaluation method based on evaluation criteria balanced on interval weights, Symmetry, 2019, 11(12), 1503.
[27] N. Adler, L. Friedman and Z. Sinuany-Stern, Review of ranking methods in the data envelopment analysis context, European Journal of Operational Research, 2002, 140(2), 249-265.
[28] M. Davtalab-Olyaie, A secondary goal in DEA cross-efficiency evaluation: A one home run is much better than two doubles criterion, Journal of the Operational Research Society, 2019, 70(5), 807-816.
[29] W. Markphan, K. Suttara, J. Nukeaw and U. Tiprung, The attribute of the energy of fuel briquette from mangosteen peel and rubber wood, Burapha Science Journal, 2021, 26(3), 1371-1389. (in Thai)
[30] K.Wirunphan, T.Saiplean and P. Jaichompoo, Production of compressed charcoal fuel from the waste materials collected after processing Khao-Larm, RMUTL Engineering Journal, 2017, 2(1), 1-15. (in Thai)
[31] W. Khantirat, N. Wichapa and A. Lawong, Selecting the suitable community-based alternative energy from biomass briquettes fuel from agricultural materials using analytic hierarchy, Industrial Engineering Network 2018 (IE Network 2018), Proceedings, 2018, 323-329.
[32] W. Khantirat, N. Wichapa, A. Sriburum and U. Tarnpornsri, Selection of the suitable biomass fuel briquettes generated from agricultural waste using DEA-cross-efficiency, Journal of Engineering, RMUTT, 2020, 18(1), 33-43. (in Thai)
[33] N. Wichapa, A.Choompol and T. Sudsuansee, Using the hybrid DEA-TOPSIS technique for selecting the suitable biomass materials for processing into fuel briquettes, The Journal of Industrial Technology, 2019, 15(1), 68-84. (in Thai)
[34] www.charcoal.snmcenter.com/charcoalthai/hot.php. (Accessed on 4 April 2022)
DOI: 10.14416/j.ind.tech.2022.08.007
Refbacks
- There are currently no refbacks.