Valorization of Coffee By-Products through Biorefinery Approaches for a Sustainable Bioeconomy
Abstract
Keywords
[1] M. Sriariyanun, M. P. Gundupalli, V. Phakeenuya, T. Phusamtisampan, Y. S. Cheng, and P. Venkatachalam, “Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms,” Journal of Applied Science and Engineering, vol. 27, no. 2, pp. 1–10, Jun. 2023, doi: 10.6180/jase.202402_27(2).0001.
[2] R. J. Paul Latiza and R. V. Rubi, “Circular economy integration in 1G+2G sugarcane bioethanol production: Application of carbon capture, utilization and storage, closed-loop systems, and waste valorization for sustainability,” Applied Science and Engineering Progress, vol. 17, no. 3, 2025, Art. no. 7448, doi: 10.14416/j.asep.2024.07.005.
[3] A. Zabaniotou and P. Kamaterou, “Food waste valorization advocating circular bioeconomy: A critical review of potentialities and perspectives of spent coffee grounds biorefinery,” Journal of Cleaner Production, vol. 211, pp. 1553–1566, Feb. 2019, doi: 10.1016/j.jclepro.2018.11.230.
[4] A. E. Atabani et al., “Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery,” Environment, Development and Sustainability, vol. 25, no. 8, pp. 7585–7623, Aug. 2023, doi: 10.1007/s10668-022-02361-z.
[5] V. Ashokkumar et al., “Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts: A critical review,” Bioresource Technology, vol. 344, Jan. 2022, Art. no. 126195, doi: 10.1016/j.biortech.2021.126195.
[6] S. Areeya et al., “A review of sugarcane biorefinery: From waste to value-added products,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7402, doi: 10.14416/j.asep.2024.06.004.
[7] E. J. Panakkal et al., “A comparative study on effectiveness and recyclability of three different deep eutectic solvents for biomass fractionation,” Biomass Conversion and Biorefinery, vol. 15, no. 9, pp. 13393–13407, May 2025, doi: 10.1007/s13399-024-06007-0.
[8] D. Bhattacharyya, M. Sriariyanun, and A. Tawai, “Sustainable development: Toward net zero and carbon neutrality,” Applied Science and Engineering Progress, vol. 18, no. 3, 2025, Art. no. 7883, doi: 10.14416/j.asep.2025.01.005.
[9] C. A. Guerrero-Martin et al., “Conceptual design study of a coffee stem gasification scheme in the context of a biorefinery,” Energies, vol. 17, no. 19, p. 4972, Oct. 2024, doi: 10.3390/en17194972.
[10] J. A. Velasquez-Pinas, L. C. Ampese, H. D. D. Ziero, R. L. R. Steinmetz, C. Belt, and T. Forster-Carneiro, “Circular bioeconomy of coffee industries: Energy and techno-economic approach based on biogas and biomethane production,” Journal of Cleaner Production, vol. 418, p. 138045, Sep. 2023, doi: 10.1016/j.jclepro.2023.138045.
[11] Y.-G. Lee et al., “Value-added products from coffee waste: A review,” Molecules, vol. 28, no. 8, p. 3562, Apr. 2023, doi: 10.3390/molecules28083562.
[12] G. D. Saratale et al., “A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production,” Bioresource Technology, vol. 314, p. 123800, Oct. 2020, doi: 10.1016/j.biortech.2020.123800.
[13] G. D. Gebreeyessus, “Towards the sustainable and circular bioeconomy: Insights on spent coffee grounds valorization,” Science of the Total Environment, vol. 833, p. 155113, Aug. 2022, doi: 10.1016/j.scitotenv.2022.155113.
[14] J. A. Serna-Jiménez, J. A. Siles, M. de los Ángeles Martín, and A. F. Chica, “A review on the applications of coffee waste derived from primary processing: Strategies for revalorization,” Processes, vol. 10, no. 11, p. 2436, Nov. 2022, doi: 10.3390/pr10112436.
[15] O. M. Abioye et al., “An overview of the role of vermicompost in reducing greenhouse gas emissions, improving soil health, and increasing crop yields,” Applied Science and Engineering Progress, vol. 18, no. 2, 2025, Art. no. 7586, doi: 10.14416/j.asep.2024.09.011.
[16] G. Semaan, S. Shobana, S. Arvindnarayan, N. Bhatt, J. Dharmaraja, and G. Kumar, “Food waste biorefinery: A case study for spent coffee grounds (SCGs) into bioactive compounds across the European Union,” in Waste Biorefinery: Value Addition through Resource Utilization, Jan. 2021, pp. 459–473, doi: 10.1016/b978-0-12-821879-2.00017-x.
[17] M. M. Strieder, J. A. V. Piñas, L. C. Ampese, J. M. Costa, T. F. Carneiro, and M. A. Rostagno, “Coffee biorefinery: The main trends associated with recovering valuable compounds from solid coffee residues,” Journal of Cleaner Production, vol. 415, p. 137716, Aug. 2023, doi: 10.1016/j.jclepro.2023.137716.
[18] V. Phakeenuya, T. Phusantisampan, and M. Sriariyanun, “Computational screening and molecular docking analysis of bioactive peptides from spent coffee grounds as potential α-glucosidase and α-amylase inhibitors for antidiabetic therapy,” Applied Science and Engineering Progress, vol. 18, no. 3, 2025, Art. no. 7880, doi: 10.14416/j.asep.2025.09.002.
[19] A. L. Sales, J. Depaula, C. M. Silva, A. Cruz, M. A. L. Miguel, and A. Farah, “Effects of regular and decaffeinated roasted coffee (Coffea arabica and Coffea canephora) extracts and bioactive compounds on in vitro probiotic bacterial growth,” Food & Function, vol. 11, no. 2, pp. 1410–1424, Feb. 2020, doi: 10.1039/c9fo02589h.
[20] M. Z. A. Chan and S. Q. Liu, “Coffee brews as food matrices for delivering probiotics: Opportunities, challenges, and potential health benefits,” Trends in Food Science & Technology, vol. 119, pp. 227–242, Jan. 2022, doi: 10.1016/j.tifs.2021.11.030.
[21] S. Tripathi and P. S. Murthy, “Coffee oligosaccharides and their role in health and wellness,” Food Research International, vol. 173, no. Pt 1, Nov. 2023, doi: 10.1016/j.foodres.2023.113288.
[22] T. M. Mata, A. A. Martins, and N. S. Caetano, “Bio-refinery approach for spent coffee grounds valorization,” Bioresource Technology, vol. 247, pp. 1077–1084, Jan. 2018, doi: 10.1016/j.biortech.2017.09.106.
[23] A. E. Atabani et al., “Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery,” Fuel, vol. 254, p. 115640, Oct. 2019, doi: 10.1016/j.fuel.2019.115640.
[24] F. Battista, S. Zanzoni, G. Strazzera, M. Andreolli, and D. Bolzonella, “The cascade biorefinery approach for the valorization of the spent coffee grounds,” Renewable Energy, vol. 157, pp. 1203–1211, Sep. 2020, doi: 10.1016/j.renene.2020.05.113.
[25] A. M. Jeszka, “Current status of coffee production and global marketing: Recent update,” Coffee Science: Biotechnological Advances, Economics, and Health Benefits, pp. 3–13, Aug. 2022, doi: 10.1201/9781003043133-2/current-status-coffee-production-global-marketing-recent-update-anna-maria-jeszka.
[26] A. Giraudo, S. Grassi, F. Savorani, G. Gavoci, E. Casiraghi, and F. Geobaldo, “Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis,” Food Control, vol. 99, pp. 137–145, May 2019, doi: 10.1016/j.foodcont.2018.12.033.
[27] D. D. Durán-Aranguren et al., “Scientometric overview of coffee by-products and their applications,” Molecules, vol. 26, no. 24, p. 7605, Dec. 2021, doi: 10.3390/molecules26247605.
[28] S. Pinzi, C. Buratti, P. Bartocci, G. Marseglia, F. Fantozzi, and M. Barbanera, “A simplified method for kinetic modeling of coffee silver skin pyrolysis by coupling pseudo-components peaks deconvolution analysis and model free-isoconversional methods,” Fuel, vol. 278, p. 118260, Oct. 2020, doi: 10.1016/j.fuel.2020.118260.
[29] P. Mazzafera, “Chemical composition of defective coffee beans,” Food Chemistry, vol. 64, no. 4, pp. 547–554, Mar. 1999, doi: 10.1016/s0308-8146(98)00167-8.
[30] C. del Pozo, J. Bartrolí, S. Alier, N. Puy, and E. Fàbregas, “Production of antioxidants and other value-added compounds from coffee silverskin via pyrolysis under a biorefinery approach,” Waste Management, vol. 109, pp. 19–27, May 2020, doi: 10.1016/j.wasman.2020.04.044.
[31] L. B. Cangussu, J. C. Melo, A. S. Franca, and L. S. Oliveira, “Chemical characterization of coffee husks, a by-product of Coffea arabica production,” Foods, vol. 10, no. 12, p. 3125, Dec. 2021, doi: 10.3390/foods10123125.
[32] R. R. Rizkiansyah, Y. Mardiyati, A. Hariyanto, S. Steven, and T. Dirgantara, “Non-wood paper from coffee pulp waste: How its performance as coffee filter,” Cleaner Materials, vol. 12, p. 100241, Jun. 2024, doi: 10.1016/j.clema.2024.100241.
[33] G. Salbitani et al., “Cultivation of barley seedlings in a coffee silverskin-enriched soil: Effects in plants and in soil,” Plant and Soil, vol. 498, no. 1–2, pp. 199–211, May 2024, doi: 10.1007/s11104-023-06428-2.
[34] V. Benitez, M. Rebollo-Hernanz, S. Hernanz, S. Chantres, Y. Aguilera, and M. A. Martin-Cabrejas, “Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization,” Food Research International, vol. 122, pp. 105–113, Aug. 2019, doi: 10.1016/j.foodres.2019.04.002.
[35] D. B. Machado and R. A. de Oliveira, “Functional and technological properties of coffee mucilage (Coffea arabica) and its application in edible films,” Química Nova, vol. 46, no. 8, pp. 778–784, Oct. 2023, doi: 10.21577/0100-4042.20230052.
[36] C. L. Mendoza Martinez, J. Saari, Y. Melo, M. Cardoso, G. M. de Almeida, and E. Vakkilainen, “Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case,” Renewable and Sustainable Energy Reviews, vol. 137, p. 110585, Mar. 2021, doi: 10.1016/j.rser.2020.110585.
[37] R. Q. Mensah et al., “Properties and applications of green-derived products from spent coffee grounds – Steps towards sustainability,” Bioresource Technology Reports, vol. 26, p. 101859, Jun. 2024, doi: 10.1016/j.biteb.2024.101859.
[38] E. Mahmoud, A. E. Atabani, and I. A. Badruddin, “Valorization of spent coffee grounds for biogas production: A circular bioeconomy approach for a biorefinery,” Fuel, vol. 328, p. 125296, Nov. 2022, doi: 10.1016/j.fuel.2022.125296.
[39] H. Ahmed, R. S. Abolore, S. Jaiswal, and A. K. Jaiswal, “Toward circular economy: Potentials of spent coffee grounds in bioproducts and chemical production,” Biomass, vol. 4, no. 2, pp. 286–312, Apr. 2024, doi: 10.3390/biomass4020014.
[40] K. Johnson, Y. Liu, and M. Lu, “A review of recent advances in spent coffee grounds upcycle technologies and practices,” Frontiers in Chemical Engineering, vol. 4, p. 838605, Apr. 2022, doi: 10.3389/fceng.2022.838605.
[41] S. Behne, H. Franke, S. Schwarz, and D. W. Lachenmeier, “Risk assessment of chlorogenic and isochlorogenic acids in coffee by-products,” Molecules, vol. 28, no. 14, p. 5540, Jul. 2023, doi: 10.3390/molecules28145540.
[42] A. Gil-Ramírez et al., “Unveiling the nutritional profile and safety of coffee pulp as a first step in its valorization strategy,” Foods, vol. 13, no. 18, p. 3006, Sep. 2024, doi: 10.3390/foods13183006.
[43] D. V. Phuong and L. T. Nguyen, “Coffee pulp pretreatment methods: A comparative analysis of hydrolysis efficiency,” Foods and Raw Materials, vol. 12, no. 1, pp. 133–141, 2024, doi: 10.21603/2308-4057-2024-1-594.
[44] T. Widjaja, A. Altway, Z. Lini, and T. Iswanto, “Two-stage pre-treatment of coffee pulp waste to optimize the reducing sugar production using enzymatic hydrolysis,” Malaysian Journal of Fundamental and Applied Sciences, vol. 15, no. 6, pp. 878–884, 2019, doi: 10.11113/mjfas.v15n6.1323.
[45] C. Braojos et al., “Coffee pulp simulated digestion enhances its in vitro ability to decrease emulsification and digestion of fats, and attenuates lipid accumulation in HepG2 cell model,” Current Research in Food Science, vol. 9, p. 100804, Jan. 2024, doi: 10.1016/j.crfs.2024.100804.
[46] W. B. Sunarharum, D. J. Williams, and H. E. Smyth, “Complexity of coffee flavor: A compositional and sensory perspective,” Food Research International, vol. 62, pp. 315–325, Aug. 2014, doi: 10.1016/j.foodres.2014.02.030.
[47] P. Tantayotai et al., “Production of bioethanol and aroma compounds from pretreated coffee shell and coffee silverskins with binary and ternary deep eutectic solvents,” Sustainable Chemistry for the Environment, vol. 11, p. 100276, Sep. 2025, doi: 10.1016/j.scenv.2025.100276.
[48] E. M. C. Alexandre, S. A. Moreira, L. M. G. Castro, M. Pintado, and J. A. Saraiva, “Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions,” Food Reviews International, vol. 34, no. 6, pp. 581–612, Aug. 2018, doi: 10.1080/87559129.2017.1359842.
[49] A. Vandeponseele, M. Draye, C. Piot, and G. Chatel, “Subcritical water and supercritical carbon dioxide: Efficient and selective eco-compatible solvents for coffee and coffee by-products valorization,” Green Chemistry, vol. 22, no. 24, pp. 8544–8571, Dec. 2020, doi: 10.1039/d0gc03146a.
[50] A. C. Miano and M. L. Rojas, “Drying strategies of spent coffee grounds using refractance window method,” Food Research International, vol. 178, p. 114007, Feb. 2024, doi: 10.1016/j.foodres.2024.114007.
[51] D. B. Lemma and W. A. Debebe, “Wet coffee processing wastewater treatment by using an integrated constructed wetland,” Desalination and Water Treatment, vol. 304, pp. 97–111, Aug. 2023, doi: 10.5004/dwt.2023.29841.
[52] All about honey coffee processing. “Green Plantation.” greenplantation.com. Accessed: Feb. 16, 2025. [Online]. Available: https://www.greenplantation.com/a/all-about-honey-coffee-processing
[53] J. Pereira, M. M. R. de Melo, C. M. Silva, P. C. Lemos, and L. S. Serafim, “Impact of a pretreatment step on the acidogenic fermentation of spent coffee grounds,” Bioengineering, vol. 9, no. 8, p. 362, Aug. 2022, doi: 10.3390/bioengineering9080362.
[54] Coffee processing methods. “The Roasted Life.” Accessed: Feb. 16, 2025. [Online]. Available: https://www.theroastedlife.net/coffee-processing-methods
[55] Y. A. da Fonseca et al., “Steam explosion pretreatment of coffee husks: A strategy towards decarbonization in a biorefinery approach,” Journal of Chemical Technology and Biotechnology, vol. 97, no. 6, pp. 1567–1574, Jun. 2022, doi: 10.1002/jctb.6956.
[56] P. Tsafrakidou et al., “Aqueous ammonia soaking pretreatment of spent coffee grounds for enhanced enzymatic hydrolysis: A bacterial cellulose production application,” Sustainable Chemistry and Pharmacy, vol. 33, p. 101121, Jun. 2023, doi: 10.1016/j.scp.2023.101121.
[57] A. S. Franca, “Coffee: Decaffeination,” Encyclopedia of Food and Health, pp. 232–236, Sep. 2015, doi: 10.1016/b978-0-12-384947-2.00183-5.
[58] N. Nava-Valente, O. A. Del Ángel-Coronel, J. Atenodoro-Alonso, and L. A. López-Escobar, “Effect of thermal and acid pre-treatment on increasing organic loading rate of anaerobic digestion of coffee pulp for biogas production,” Biomass Conversion and Biorefinery, vol. 13, no. 6, pp. 4817–4830, Apr. 2023, doi: 10.1007/s13399-021-01529-3.
[59] R. Ahmad, B. Tharappan, and D. R. Bongirwar, “Impact of gamma irradiation on the monsooning of coffee beans,” Journal of Stored Products Research, vol. 39, no. 2, pp. 149–157, Jan. 2003, doi: 10.1016/s0022-474x(01)00043-1.
[60] A. Mediani, N. Kamal, S. Y. Lee, F. Abas, and M. A. Farag, “Green extraction methods for isolation of bioactive substances from coffee seed and spent,” Separation and Purification Reviews, vol. 52, no. 1, pp. 24–42, Jan. 2023, doi: 10.1080/15422119.2022.2027444.
[61] N. Sawatdee, “Pretreatment of coffee pulp for reducing sugar production using deep eutectic solvents,” International Journal of Science and Technology, vol. 15, no. 3, pp. 261–269, 2025.
[62] A. Pandey, C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos, “Biotechnological potential of coffee pulp and coffee husk for bioprocesses,” Biochemical Engineering Journal, vol. 6, no. 2, pp. 153–162, Oct. 2000, doi: 10.1016/s1369-703x(00)00084-x.
[63] J. R. Banu et al., “Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy,” Bioresource Technology, vol. 302, p. 122821, Apr. 2020, doi: 10.1016/j.biortech.2020.122821.
[64] L. Yeoh and K. S. Ng, “Future prospects of spent coffee ground valorisation using a biorefinery approach,” Resources, Conservation and Recycling, vol. 179, p. 106123, Apr. 2022, doi: 10.1016/j.resconrec.2021.106123.
[65] S. R. Hughes et al., “Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept,” Applied Microbiology and Biotechnology, vol. 98, no. 20, pp. 8413–8431, Oct. 2014, doi: 10.1007/s00253-014-5991-1.
[66] C. del Pozo et al., “Converting coffee silverskin to value-added products by a slow pyrolysis-based biorefinery process,” Fuel Processing Technology, vol. 214, p. 106708, Apr. 2021, doi: 10.1016/j.fuproc.2020.106708.
[67] S. Areeya et al., “Process optimization of deep eutectic solvent pretreatment of coffee husk biomass,” E3S Web of Conferences, vol. 428, p. 01010, Sep. 2023, doi: 10.1051/e3sconf/202342801010.
[68] B. Saha, N. Arshad, M. Sriariyanun, W. Rodiahwati, and M. P. Gundupalli, “Anaerobic digestion: Technology for biogas as a source of renewable energy from biomass—A review,” Applied Science and Engineering Progress, vol. 18, no. 4, 2025, Art. no. 7895, doi: 10.14416/j.asep.2025.07.008.
[69] S. Areeya et al., “A review on chemical pretreatment of lignocellulosic biomass for the production of bioproducts: Mechanisms, challenges and applications,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6767, doi: 10.14416/j.asep.2023.02.008.
[70] N. Arshad et al., “Deep eutectic solvents (DESs) in lignocellulosic biomass pretreatment: Mechanisms and process optimization,” Bioresource Technology Reports, vol. 31, p. 102190, Sep. 2025, doi: 10.1016/j.biteb.2025.102190.
[71] A. H. Sarosa et al., “The kinetic study of Dampit coffee caffeine degradation by Saccharomyces cerevisiae,” Applied Science and Engineering Progress, vol. 17, no. 1, 2024, Art. no. 6891, doi: 10.14416/j.asep.2023.07.004.
[72] N. C. S. Silva et al., “Pretreatment and enzymatic hydrolysis of coffee husk for the production of potentially fermentable sugars,” Journal of Chemical Technology and Biotechnology, vol. 97, no. 3, pp. 676–688, Mar. 2022, doi: 10.1002/jctb.6950.
[73] I. Raheem et al., “A comprehensive review of approaches in carbon capture, and utilization to reduce greenhouse gases,” Applied Science and Engineering Progress, vol. 18, no. 2, 2025, Art. no. 7629, doi: 10.14416/j.asep.2024.11.004.
[74] J. Massaya, A. P. Pereira, B. Mills-Lamptey, J. Benjamin, and C. J. Chuck, “Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches,” Food and Bioproducts Processing, vol. 118, pp. 149–166, Nov. 2019, doi: 10.1016/j.fbp.2019.08.010.
[75] J. A. Mora-Villalobos et al., “Tropical agroindustrial biowaste revalorization through integrative biorefineries: Part I—coffee and palm oil by-products,” Biomass Conversion and Biorefinery, vol. 13, no. 2, pp. 1469–1487, Apr. 2021, doi: 10.1007/s13399-021-01442-9.
[76] B. M. Gouvea, C. Torres, A. S. Franca, L. S. Oliveira, and E. S. Oliveira, “Feasibility of ethanol production from coffee husks,” Biotechnology Letters, vol. 31, no. 9, pp. 1315–1319, Aug. 2009, doi: 10.1007/s10529-009-0023-4.
[77] S. K. Karmee, “A spent coffee grounds-based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites,” Waste Management, vol. 72, pp. 240–254, Feb. 2018, doi: 10.1016/j.wasman.2017.10.042.
[78] M. D. Moreira, M. M. Melo, J. M. Coimbra, K. C. dos Reis, R. F. Schwan, and C. F. Silva, “Solid coffee waste as an alternative to produce carotenoids with antioxidant and antimicrobial activities,” Waste Management, vol. 82, pp. 93–99, Dec. 2018, doi: 10.1016/j.wasman.2018.10.017.
[79] A. R. L. Dohme and H. Engelhardt, “The chemistry of cascara sagrada,” Journal of the American Chemical Society, vol. 20, no. 7, pp. 534–546, Jul. 1898, doi: 10.1021/ja02069a013.
[80] A. Iriondo-Dehond, M. Iriondo-Dehond, and M. D. Del Castillo, “Applications of compounds from coffee processing by-products,” Biomolecules, vol. 10, no. 9, p. 1219, Aug. 2020, doi: 10.3390/biom10091219.
[81] P. S. Murthy and M. Madhava Naidu, “Sustainable management of coffee industry by-products and value addition—A review,” Resources, Conservation and Recycling, vol. 66, pp. 45–58, Sep. 2012, doi: 10.1016/j.resconrec.2012.06.005.
[82] B. Janissen and T. Huynh, “Chemical composition and value-adding applications of coffee industry by-products: A review,” Resources, Conservation and Recycling, vol. 128, pp. 110–117, Jan. 2018, doi: 10.1016/j.resconrec.2017.10.001.
[83] O. M. Abioye, D. A. Olasehinde, and T. Abadunmi, “The role of biofertilizers in sustainable agriculture: An eco-friendly alternative to conventional chemical fertilizers,” Applied Science and Engineering Progress, vol. 17, no. 1, 2023, Art. no. 6883, doi: 10.14416/j.asep.2023.07.001.
[84] D. Jose et al., “A comprehensive review of conversion of rice biomass into sustainable products: A green approach toward a circular economy,” Sustainable Chemistry for Climate Action, vol. 6, p. 100069, Jun. 2025, doi: 10.1016/j.scca.2025.100069.
[85] A. Burniol-Figols, K. Cenian, I. V. Skiadas, and H. N. Gavala, “Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds,” Biochemical Engineering Journal, vol. 116, pp. 54–64, Dec. 2016, doi: 10.1016/j.bej.2016.04.025.
[86] A. Arancibia-Díaz et al., “Enhanced antioxidant capacity and yield of release of chlorogenic acids and derivatives by solid-state fermentation of spent coffee grounds under controlled conditions of aeration and moisturizing,” Food Chemistry, vol. 479, p. 143744, Jul. 2025, doi: 10.1016/j.foodchem.2025.143744.
[88] Q. Cavanagh, M. S. L. Brooks, and H. P. V. Rupasinghe, “Innovative technologies used to convert spent coffee grounds into new food ingredients: Opportunities, challenges, and prospects,” Future Foods, vol. 8, p. 100255, Dec. 2023, doi: 10.1016/j.fufo.2023.100255.
[89] M. Montemurro, M. Casertano, A. Vilas-Franquesa, C. G. Rizzello, and V. Fogliano, “Exploitation of spent coffee ground (SCG) as a source of functional compounds and growth substrate for probiotic lactic acid bacteria,” LWT, vol. 198, p. 115974, Apr. 2024, doi: 10.1016/j.lwt.2024.115974.
[90] S. Obruca, P. Benesova, D. Kucera, S. Petrik, and I. Marova, “Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids,” New Biotechnology, vol. 32, no. 6, pp. 569–574, Dec. 2015, doi: 10.1016/j.nbt.2015.02.008.
[91] I. S. Choi, S. G. Wi, S. B. Kim, and H. J. Bae, “Conversion of coffee residue waste into bioethanol using popping pretreatment,” Bioresource Technology, vol. 125, pp. 132–137, Dec. 2012, doi: 10.1016/j.biortech.2012.08.080.
[92] D. Dadi et al., “Valorization of coffee by-products for bioethanol production using lignocellulosic yeast fermentation and pervaporation,” International Journal of Environmental Science and Technology, vol. 15, no. 4, pp. 821–832, Apr. 2018, doi: 10.1007/s13762-017-1440-x.
[93] K. Narayanan et al., “Exploring ternary deep eutectic solvent pretreatment in a one-pot process with Napier grass for bioethanol production,” BioEnergy Research, vol. 17, no. 4, pp. 2213–2225, Dec. 2024, doi: 10.1007/s12155-024-10791-y.
[94] A. Setiawan, Z. Jalil, S. Nurjannah, S. Riskina, and M. Muhammad, “Role of activated carbon from Arabica coffee waste in enhancing the dehydrogenation properties of magnesium hydride (MgH₂) for hydrogen storage,” Applied Science and Engineering Progress, May 2025, doi: 10.14416/j.asep.2025.05.010.
[95] M. A. H. Salgado, I. Säumel, A. Cianferoni, and L. A. C. Tarelho, “Potential for farmers’ cooperatives to convert coffee husks into biochar and promote the bioeconomy in the North Ecuadorian Amazon,” Applied Sciences, vol. 11, no. 11, p. 4747, May 2021, doi: 10.3390/app11114747.
[96] A. D. Craig, F. Khattak, P. Hastie, M. R. Bedford, and O. A. Olukosi, “Xylanase and xylo-oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens,” British Poultry Science, vol. 61, no. 1, pp. 70–78, Jan. 2020, doi: 10.1080/00071668.2019.1673318.
[97] K. K. Valladares-Diestra et al., “The potential of xylooligosaccharides as prebiotics and their sustainable production from agro-industrial by-products,” Foods, vol. 12, no. 14, p. 2681, Jul. 2023, doi: 10.3390/foods12142681.
[98] M. Rebollo-Hernanz et al., “Biorefinery and stepwise strategies for valorizing coffee by-products as bioactive food ingredients and nutraceuticals,” Applied Sciences, vol. 13, no. 14, p. 8326, Jul. 2023, doi: 10.3390/app13148326.
[99] D. Jose et al., “Effective deep eutectic solvent pretreatment in one-pot lignocellulose biorefinery for ethanol production,” Industrial Crops and Products, vol. 222, p. 119626, Dec. 2024, doi: 10.1016/j.indcrop.2024.119626.
[100] E. Mahmoud, A. E. Atabani, and I. A. Badruddin, “Valorization of spent coffee grounds for biogas production: A circular bioeconomy approach for a biorefinery,” Fuel, vol. 328, p. 125296, Nov. 2022, doi: 10.1016/j.fuel.2022.125296.
[101] M. Taifouris, M. L. Corazza, and M. Martín, “Integrated design of biorefineries based on spent coffee grounds,” Industrial and Engineering Chemistry Research, vol. 60, no. 1, pp. 494–506, Jan. 2021, doi: 10.1021/acs.iecr.0c05246.
[102] V. Manasa, A. Padmanabhan, and K. A. Anu Appaiah, “Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle,” Waste Management, vol. 120, pp. 762–771, Feb. 2021, doi: 10.1016/j.wasman.2020.10.045.
[103] M. Bigdeloo, T. Teymourian, E. Kowsari, S. Ramakrishna, and A. Ehsani, “Sustainability and circular economy of food wastes: Waste reduction strategies, higher recycling methods, and improved valorization,” Materials Circular Economy, vol. 3, no. 1, pp. 1–9, Jan. 2021, doi: 10.1007/s42824-021-00017-3.
[104] G. Sastra Waskita, “Turning trash into treasure: Waste banks driving circular economy through coffee, plastic, and oil waste management,” International Journal of Economic Literature (INJOLE), vol. 3, no. 2, pp. 654–669, 2025.
[105] P. Rangarajan and J. A. Tharian. “Coffee waste management—An overview.” researchgate.net. Accessed: Jun. 14, 2025. [Online]. Available: https://www.researchgate.net/publication/330825000
[106] S. Sur, V. Dave, A. Prakash, and P. Sharma, “Expansion and scale-up of technology for ethanol production based on the concept of biorefinery,” Journal of Food Process Engineering, vol. 44, no. 2, p. e13582, Feb. 2021, doi: 10.1111/jfpe.13582.
[107] M. C. Echeverria and M. Nuti, “Valorisation of the residues of coffee agro-industry: Perspectives and limitations,” AACE Clinical Case Reports, vol. 7, no. 1, p. 1, Feb. 2021, doi: 10.2174/1876400201710010013.
[108] M. Sriariyanun, M. P. Gundupalli, V. Phakeenuya, T. Phusamtisampan, Y. S. Cheng, and P. Venkatachalam, “Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms,” Journal of Applied Science and Engineering, vol. 27, Jun. 2023, doi: 10.6180/jase.202402_27(2).0001.
[109] A. Naga Babu, D. S. Reddy, G. S. Kumar, K. Ravindhranath, and G. V. Krishna Mohan, “Removal of lead and fluoride from contaminated water using exhausted coffee grounds-based bio-sorbent,” Journal of Environmental Management, vol. 218, pp. 602–612, Jul. 2018, doi: 10.1016/j.jenvman.2018.04.091.
[110] S. Martis B, A. K. Mohan, S. Chiplunkar, S. Kamath, L. C. Goveas, and C. V. Rao, “Bacterium isolated from coffee waste pulp biosorps lead: Investigation of EPS mediated mechanism,” Current Research in Microbial Sciences, vol. 2, p. 100029, Dec. 2021, doi: 10.1016/j.crmicr.2021.100029.
[111] J. Chwastowski, D. Bradło, and W. Żukowski, “Adsorption of cadmium, manganese and lead ions from aqueous solutions using spent coffee grounds and biochar produced by its pyrolysis in the fluidized bed reactor,” Materials, vol. 13, no. 12, p. 2782, Jun. 2020, doi: 10.3390/ma13122782.DOI: 10.14416/j.asep.2026.01.006
Refbacks
- There are currently no refbacks.
Applied Science and Engineering Progress







