Page Header Logo Applied Science and Engineering Progress

The Missing Link: Bridging Laboratory Biorefineries to Industrial Implementation

Nida Arshad, Diana Jose, Pau Loke Show

Abstract


-

[1]    B. Saha, N. Arshad, M. Sriariyanun, W. Rodiahwati, and M. P. Gundupalli, “Anaerobic digestion: Technology for biogas as a source of renewable energy from biomass—A review,” Applied Science and Engineering Progress, vol. 18, no. 4, Dec. 2025, doi: 10.14416/j.asep.2025. 07.008.

[2]    DiMarket. “Charting Industrial Biorefinery Growth: CAGR Projections for 2025–2033.” datainsightsmarket.com. Accessed: Oct. 15, 2025. [Online.] Available: https://www.datainsightsmarket. com/reports/industrial-biorefinery-97731

[3]    D. Pérez-Almada, Á. Galán-Martín, M. del M. Contreras, and E. Castro, “Integrated techno-economic and environmental assessment of biorefineries: Review and future research directions,” Sustain Energy Fuels, vol. 7, no. 17, pp. 4031–4050, Aug. 2023, doi: 10.1039/D3SE00405H.

[4]    D. C. Makepa and C. H. Chihobo, “Barriers to commercial deployment of biorefineries: A multi-faceted review of obstacles across the innovation chain,” Heliyon, vol. 10, no. 12, p. e32649, Jun. 2024, doi: 10.1016/J.HELIYON. 2024.E32649.

[5]    N. M. Kosamia, M. Samavi, K. Piok, and S. K. Rakshit, “Perspectives for scale up of biorefineries using biochemical conversion pathways: Technology status, techno-economic, and sustainable approaches,” Fuel, vol. 324, p. 124532, Sep. 2022, doi: 10.1016/J.FUEL.2022.124532.

[6]    S. Areeya et al., “A review on chemical pretreatment of lignocellulosic biomass for the production of bioproducts: Mechanisms, challenges and applications,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6767, doi: 10.14416/j.asep.2022.02.009.

[7]    U.S. Department of Energy. “Systems Development & Integration – Scale-Up Portfolio.” energy.gov. Accessed: Oct. 16, 2025. [Online.] Available: https://www.energy.gov/eere/bioenergy/systems-development-integration-scale-portfolio

[8]    D. Jose, N. Kitiborwornkul, M. Sriariyanun, and K. Keerthi, “A review on chemical pretreatment methods of lignocellulosic biomass: Recent advances and progress,” Applied Science and Engineering Progress, vol. 15, no. 4, 2022, Art. no. 6210, doi: 10.14416/j.asep.2022.08.001.

[9]    T. Ruensodsai and M. Sriariyanun, “Sustainable development and progress of lignocellulose conversion to platform chemicals,” The Journal of King Mongkut’s University of Technology North Bangkok, vol. 32, no. 4, Mar. 2022, doi: 10.14416/J.KMUTNB.2022.03.001.

[10]  A. E. K. Afedzi et al., “Enhancing economic and environmental sustainability in lignocellulosic bioethanol production: Key factors, innovative technologies, policy frameworks, and social considerations,” Sustainability, vol. 17, no. 2, p. 499, Jan. 2025, doi: 10.3390/SU17020499.

[11]  D. Jose, K. Rattanaporn, N. Kittiborwornkul, A. A. Adediran, and M. Sriariyanun, “Biorefining Processes for Valorization of Lignocellulosic Biomass for Sustainable Production of Value-Added Products,” in Lignocellulosic Biomass Refining for Second Generation Biofuel Production, Florida: CRC Press, 2023, pp. 23–62, doi: 10.1201/9781003203452-2.

[12]  A. I. Osman et al., “Life cycle assessment and techno-economic analysis of sustainable bioenergy production: A review,” Environmental Chemistry Letters, vol. 22, no. 3, pp. 1115–1154, Jun. 2024, doi: 10.1007/S10311-023-01694-Z/FIGURES/4.

[13]  N. Arshad et al., “Deep eutectic solvents (DESs) in lignocellulosic biomass pretreatment: Mechanisms and process optimization,” Bioresource Technology Reports, vol. 31, p. 102190, 2025, doi: 10.1016/ j.biteb.2025.102190.

[14]  S. Areeya et al., “A review of sugarcane biorefinery: From waste to value-added products,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7402, doi: 10.14416/j.asep.2024.06.004.

Full Text: PDF

DOI: 10.14416/j.asep.2025.11.002

Refbacks

  • There are currently no refbacks.