Page Header Logo Applied Science and Engineering Progress

Anaerobic Digestion: Technology for Biogas as a Source of Renewable Energy from Biomass—A Review

Biswanath Saha, Nida Arshad, Malinee Sriariyanun, Wawat Rodiahwati, Marttin Paulraj Gundupalli

Abstract


Anaerobic digestion (AD) is a conventional method for converting biomass into renewable energy, gaining renewed interest in recent years due to its potential for sustainable energy production. While the fundamental principles of AD are well-established, modern research primarily focuses on optimizing the process under various conditions to enhance efficiency and yield. This study provides a comprehensive assessment of AD, exploring the impact of pretreatment methods, inhibitors, and key parameters affecting its performance. Special emphasis is placed on substrates containing lignin or bacterial cells, which are identified as the most adaptable for pretreatment strategies aimed at improving AD efficiency. The analysis further evaluates existing methods for assessing improvements in AD across different systems, highlighting current challenges and the potential for developing enhanced evaluation techniques. The findings underscore the importance of exploring alternative renewable energy sources beyond fossil fuels, with AD serving as a promising solution. Understanding the interplay between pretreatment, process parameters, and inhibitor management is essential for advancing AD technology and achieving economically viable outcomes.

Keywords



[1]    I. Raheem, A. Tawai, S. Amornraksa, M. Sriariyanun, A. Joshi, M. Gupta, W. Pongprayoon, D. Bharracharyya, and S. K. Maity, “A comprehensive review of approaches in carbon capture, and utilization to reduce greenhouse gases,” Applied Science and Engineering Progress, vol. 18, no. 2, Article No. 7629, 2025, doi: 10.14416/j.asep.2024.11.004.

[2]    M. Antar, D. Lyu, M. Nazari, A. Shah, X. Zhou, and D. L. Smith, “Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization,” Renewable and Sustainable Energy Reviews, vol. 139, p. 110691, 2021.

[3]    A. B. D. Nandiyanto, N. N. Azizah, and G. C. S. Girsang, “Optimal design and techno-economic analysis for corncob particles briquettes: A literature review of the utilization of agricultural waste and analysis calculation,” Applied Science and Engineering Progress, vol. 15, no. 3, Art. no. 5508, 2022, doi: 10.14416/j.asep.2021.10.006.

[4]    D. O. Hall, “Biomass energy,” Energy Policy, vol. 19, no. 8, pp. 711–737, 1991.

[5]    O. M. Abioya, M. F. Amodu, D. O. Raphael, D. A. Olasehinde, M. M. Aniobi, K. O. Yusuf, and A. I. Olosho, “An overview of the role of vermicompost in reducing green house gas emissions, improving soil health, and increasing crop yields,” Applied Science and Engineering Progress, vol. 18, no. 2, Art. no. 7586, 2025, doi: 10.14416/j.asep.2024.09.011.

[6]    P. Baranitharan, S. Dasari, S. M. Kumar, N. Kottam, K. Rattanaporn, J. Jayaprakash, and M. Sriariyanun, “Chemically pretreated biomass conversion for biorefinery: A review of current trends,” Korean Chemical Engineering Research, vol. 63, pp. 145–164, 2025.

[7]    M. Sriariyanun and B. Dharmalingam, “From waste to wealth: Challenges in producing value-added biochemicals from lignocellulose biorefinery,” Journal of Applied Science and Emerging Technologies, vol. 22, no. 3, 2023, doi: 10.14416/JASET.KMUTNB.2023.03.001.

[8]    N. Pattharaprachayakul, N. Kesonlam, P. Duangjumpa, V. Rungsardthong, W. Suvajittanont, and B. Lamsal, “Optimization of hydraulic retention time and organic loading rate in anaerobic digestion of squeezed pineapple liquid wastes for biogas production,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 468–476, 2021, doi: 10.14416/j.asep.2021. 04.004.

[9]    R. J. P. Latiza, R. V. Rubi, J. Olay, and A. Soriano, “Is the future of energy rotten? Novel perspective on tri-ohase fermentation and the food waste paradox,” Applied Science and Engineering Progress, vol. 18, no. 4, Art. no. 7735, 2025, doi: 10.14416/j.asep.2025.05.008.

[10]  N. Mills, P. Pearce, J. Farrow, R. B. Thorpe, and N. F. Kirkby, “Biochemical methane potential (BMP) test for Ageratum conyzoides to optimize ideal food to microorganism (F/M) ratio,” Waste Management, vol. 34, no. 1, pp. 185–195, 2014.

[11]  X. Meng, Q. Wang, X. Zhao, Y. Cai, X. Ma, J. Fu, and L. Ren, “A review of the technologies used for preserving anaerobic digestion inoculum,” Renewable and Sustainable Energy Reviews, vol. 188, p. 113804, 2023.

[12]  R. J. Paul and R. V. Rubi, “Circular economy integration in 1G+2G sugarcane bioethanol production: Application of carbon capture, utilization and storage, closed-loop systems, and waste valorization for sustainability,” Applied Science and Engineering Progress, vol. 18, no. 1, p. 7448, 2025, doi: 10.14416/j.asep.2024.07.005.

[13] F. Sher, N. Smječanin, H. Hrnjić, A. Karadža, R. Omanović, E. Šehović, and J. Sulejmanović, “Emerging technologies for biogas production: A critical review on recent progress, challenges and perspectives,” Process Safety and Environmental Protection, vol. 188, pp. 834–859, 2024, doi: 10.1016/j.psep.2024.05.138.

[14] S. Areeya, E. J. Panakkal, M. Sriariyanun, T. Kangsadan, A. Tawai, S. Amornraksa, U. W. Hartley, and P. Yasurin, “A review on chemical pretreatment of lignocellulose biomass for the production of bioproducts: Mechanisms, challenges and applications,” Applied Science and Engineering Progress, vol. 16, no. 3, p. 6767, 2023, doi: 10.14416/j.asep.2023.02.008.

[15] M. K. Jameel, M. A. Mustafa, H. S. Ahmed, A. J. Mohammed, H. Ghazy, M. N. Shakir, and E. Kianfar, “Biogas: Production, properties, applications, economic and challenges: A review,” Results in Chemistry, vol. 10, p. 101549, 2024, doi: 10.1016/j.rechem. 2024.101549.

[16] F. Piadeh, I. Offie, K. Behzadian, A. Bywater, and L. C. Campos, “Real‑time operation of municipal anaerobic digestion using an ensemble data mining framework,” Bioresource Technology, vol. 392, p. 130017, 2024, doi: 10.1016/j.biortech. 2024.130017.

[17] K. He, Y. Liu, L. Tian, W. He, and Q. Cheng, “Review in anaerobic digestion of food waste,” Heliyon, vol. 10, no. 5, p. e25792, 2024, doi: 10.1016/j.heliyon.2024.e25792.

[18] D. Jose, A. Tawai, D. Divakaran, M. Sriariyanun, V. Phakeenuya, Y. S. Cheng, and P. Tantayotai, “Influence of acetic acid pretreatment and its residue on bioethanol and biogas production from water hyacinth,” Applied Science and Engineering Progress, vol. 17, p. 7326, 2024, doi: 10.14416/j.asep.2024.02.014.

[19] Y. Chen, J. J. Cheng, and K. S. Creamer, “Inhibition of anaerobic digestion process: A review,” Bioresource Technology, vol. 99, no. 10, pp. 4044–4064, 2008, doi: 10.1016/ j.biortech.2007.01.057.

[20] V. Córdoba, M. Fernández, and E. Santalla, “The effect of different inoculums on anaerobic digestion of swine wastewater,” Journal of Environmental Chemical Engineering, vol. 4, no. 1, pp. 115–122, 2016, doi: 10.1016/j.jece. 2015.11.016.

[21] M. Wang, J. Zhou, Y. X. Yuan, Y. M. Li, D. Li, Z. D. Dai, and Z. Y. Yan, “Methane production characteristics and microbial community dynamics of mono‑digestion and co‑digestion using corn stalk and pig manure,” International Journal of Hydrogen Energy, vol. 42, no. 8, pp. 4893–4901, 2017, doi: 10.1016/j.ijhydene. 2016.12.048.

[22] M. P. Gundupalli, P. Tantayotai, S. Chuetor, K. Cheenkachorn, S. Joshi, D. Bhattacharyya, and M. Sriariyanun, “Improvement of water hyacinth bioconversion by different organic and mineral acid pretreatment and the effect of post‑pretreatment washing,” BioEnergy Research, vol. 16, pp. 1718–1732, 2023, doi: 10.1007/ s12155-023-10515-5.

[23] K. Dhamodharan, V. Kumar, and A. S. Kalamdhad, “Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics,” Bioresource Technology, vol. 180, pp. 237–241, 2015, doi: 10.1016/ j.biortech.2014.12.085.

[24] W. S. Lopes, V. D. Leite, and S. Prasad, “Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste,” Bioresource Technology, vol. 94, no. 3, pp. 261–266, 2004, doi: 10.1016/j.biortech.2003. 11.005.

[25] C. González‑Fernández and P. A. García‑Encina, “Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry,” Biomass and Bioenergy, vol. 33, no. 8, pp. 1065–1069, 2009, doi: 10.1016/j.biombioe.2009.05.007.

[26] I. M. Nasir, T. I. M. Ghazi, R. Omar, and A. Idris, “Anaerobic digestion of cattle manure: Influence of inoculums concentration,” International Journal of Engineering and Technology, vol. 10, no. 1, pp. 22–26, 2013.

[27] V. B. Barua and A. S. Kalamdhad, “Biochemical methane potential test of untreated and hot air oven pretreated water hyacinth: A comparative study,” Journal of Cleaner Production, vol. 166, pp. 273–284, 2017, doi: 10.1016/j.jclepro.2017. 08.016.

[28] B. Saha, P. M. Yunus, M. Khwairakpam, and A. S. Kalamdhad, “Biochemical methane potential trial of terrestrial weeds: Evolution of mono‑digestion and co‑digestion on biogas production,” Materials Science for Energy Technologies, vol. 3, pp. 748–755, 2020, doi: 10.1016/j.mset.2020.08.005.

[29] F. Demichelis, T. Tommasi, F. A. Deorsola, D. Marchisio, and D. Fino, “Effect of inoculum origin and substrate‑inoculum ratio to enhance the anaerobic digestion of organic fraction municipal solid waste (OFMSW),” Journal of Cleaner Production, vol. 351, p. 131539, 2022, doi: 10.1016/j.jclepro.2022.131539.

[30] M. S. Hossain, T. U. Karim, M. H. Onik, D. Kumar, M. A. Rahman, A. Yousuf, and M. R. Uddin, “Impact of temperature, inoculum flow pattern, inoculum type, and their ratio on dry anaerobic digestion for biogas production,” Scientific Reports, vol. 12, no. 1, p. 6162, 2022, doi: 10.1038/s41598-022-09810-9.

[31] T. Forster‑Carneiro, M. Pérez, and L. I. Romero, “Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste,” Bioresource Technology, vol. 99, no. 15, pp. 6994–7002, 2008, doi: 10.1016/  j.biortech.2007.11.044.

[32] B. Saha, A. Sathyan, A. S. Kalamdhad, and M. Khwairakpam, “Anaerobic biodegradability test for Lantana camara to optimize the appropriate food to microorganism (F/M) ratio,” Environmental Technology, vol. 41, no. 24, pp. 3191–3198, 2020, doi: 10.1080/09593330. 2019.1670308.

[33] H. M. El‑Mashad, G. Zeeman, W. K. Van Loon, G. P. Bot, and G. Lettinga, “Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure,” Bioresource Technology, vol. 95, no. 2, pp. 191–201, 2004, doi: 10.1016/ j.biortech.2003.01.016.

[34] Y. R. Chen, V. H. Varel, and A. G. Hashimoto, “Effect of temperature on methane fermentation kinetics of beef‑cattle manure,” Biotechnology and Bioengineering Symposium, vol. 10, 1980.

[35] H. E. Larsen, B. Munch, and J. Schlundt, “Use of indicators for monitoring the reduction of pathogens in animal waste treated in biogas plants,” International Journal of Hygiene and Environmental Health, vol. 195, no. 5–6, pp. 544–555, 1994, doi: 10.1016/S1438-4639(07) 80090-8.

[36] R. H. Clark and R. E. Speece, “The pH tolerance of anaerobic digestion,” Advances in Water Pollution Research, vol. 1, pp. 1–13, 1971.

[37] M. G. Capri and G. V. R. Marais, “pH adjustment in anaerobic digestion,” Water Research, vol. 9, no. 3, pp. 307–313, 1975, doi: 10.1016/0043-1354(75)90003-7.

[38] B. Zhang, L. L. Zhang, S. C. Zhang, H. Z. Shi, and W. M. Cai, “The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two‑phase anaerobic digestion,” Environmental Technology, vol. 26, no. 3, pp. 329–340, 2005, doi: 10.1080/09593330.2005.9619016.

[39] M. A. Latif, C. M. Mehta, and D. J. Batstone, “Influence of low pH on continuous anaerobic digestion of waste activated sludge,” Water Research, vol. 113, pp. 42–49, 2017, doi: 10.1016/j.watres.2017.01.004.

[40] J. Lindner, S. Zielonka, H. Oechsner, and A. Lemmer, “Effect of different pH‑values on process parameters in two‑phase anaerobic digestion of high‑solid substrates,” Environmental Technology, vol. 36, no. 2, pp. 198–207, 2015, doi: 10.1080/09593330.2014. 918030.

[41] A. Hadiyarto, B. Budiyono, S. Djohari, I. Hutama, and W. Hasyim, “The effect of F/M ratio to the anaerobic decomposition of biogas production from fish offal waste,” Waste Technology, vol. 3, no. 2, pp. 58–61, 2015.

[42] Y. Chen, Y. Wang, H. Xie, W. Cao, and Y. Zhang, “Varied promotion effects and mechanisms of biochar on anaerobic digestion (AD) under distinct food‑to‑microorganism (F/M) ratios and biochar dosages,” Waste Management, vol. 155, pp. 118–128, 2023, doi: 10.1016/j.wasman.2023.06.011.

[43] M. N. I. Siddique, M. S. A. Munaim, and A. W. Zularisam, “Effect of food to microbe ratio variation on anaerobic co‑digestion of petrochemical wastewater with manure,” Journal of the Taiwan Institute of Chemical Engineers, vol. 58, pp. 451–457, 2016, doi: 10.1016/j.jtice.2015.11.022.

[44] X. Wang, X. Lu, F. Li, and G. Yang, “Effects of temperature and carbon‑nitrogen (C/N) ratio on the performance of anaerobic co‑digestion of dairy manure, chicken manure and rice straw: Focusing on ammonia inhibition,” PLoS One, vol. 9, no. 5, p. e97265, 2014, doi: 10.1371/ journal.pone.0097265.

[45] R. Barrena, E. I. Pagans, A. Artola, F. Vázquez, and A. Sánchez, “Co‑composting of hair waste from the tanning industry with de‑inking and municipal wastewater sludges,” Biodegradation, vol. 18, pp. 257–268, 2007, doi: 10.1007/s10532 -006-9059-4.

[46] M. Carlsson, A. Lagerkvist, and F. Morgan‑Sagastume, “The effects of substrate pre‑treatment on anaerobic digestion systems: A review,” Waste Management, vol. 32, no. 9, pp. 1634–1650, 2012, doi: 10.1016/j.wasman. 2012.05.005.

[47] Q. Zhang, Y. Yang, L. A. Hou, H. Zhu, Y. Zhang, J. Pu, and Y. Li, “Recent advances of carbon‑based additives in anaerobic digestion: A review,” Renewable and Sustainable Energy Reviews, vol. 183, p. 113536, 2023, doi: 10.1016/ j.rser.2023.114195.

[48] B. Rincón, R. Borja, J. M. González, M. C. Portillo, and C. Sáiz‑Jiménez, “Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one‑stage anaerobic digestion of two‑phase olive mill solid residue,” Biochemical Engineering Journal, vol. 40, pp. 253–261, 2008, doi: 10.1016/j.bej.2008.07.006.

[49] Y. Kwon, J. Park, G. B. Kim, Y. Jo, S. Park, and S. H. Kim, “Anaerobic digestion of sewage sludge using anaerobic dynamic membrane bioreactor under various sludge composition and organic loading rates,” Bioresource Technology, vol. 384, p. 129275, 2023, doi: 10.1016/j.biortech. 2023.129275.

[50] P. de Souza Almeida, C. A. de Menezes, F. P. Camargo, I. K. Sakamoto, M. B. A. Varesche, and E. L. Silva, “Thermophilic anaerobic co‑digestion of glycerol and cheese whey–Effect of increasing organic loading rate,” Process Safety and Environmental Protection, vol. 165, pp. 895–907, 2022, doi: 10.1016/j.psep.2022.05. 049.

[51] W. Somphol, N. Chanka, T. Boonmalert, S. Loykulnart, P. Prapainainar, A. Seubsai, and P. Dittanet, “Extraction of cellulose nanocrystals and nanofibers from rubber leaves and their impacts on natural rubber properties,” Applied Science and Engineering Progress, vol. 17, no. 2, p. 7281, 2024, doi:  10.14416/j.asep.2023.11.010.

[52] J. Waluyo, I. T. Purba, Z. A. Linanggeng, M. L. Maulana, E. Kanchanatip, M. Yanm, and D. Hantoko, “Biomass pyrolysis: A comprehensive review of production methods, derived products, and sustainable applications in advanced materials,” Applied Science and Engineering Progress, vol. 18, no. 2, p. 7645, 2025, doi:  10.14416/j.asep.2024.11.009.

[53] M. U. Khan and B. K. Ahring, “Lignin degradation under anaerobic digestion: Influence of lignin modifications—A review,” Biomass and Bioenergy, vol. 128, p. 105325, 2019, doi: 10.1016/j.biombioe.2019.105325.

[54] M. A. Khan, E. J. Panakkal, M. Sriariyanun, M. P. Gundupalli, S. Roddecha, K. Katam, J. Jayaprakash, and K. Cheenkachorn, “Dewaxing and post‑pretreatment washing: Impact on sugar and ethanol yields from tobacco residue,” Applied Science and Engineering Progress, vol. 17, no. 4, p. 7495, 2024, doi: 10.14416/ j.asep.2024.07.010.

[55] G. S. M. Allam, A. M. A, El-Aal, M. K. S. Morsi, and E.A. El-Salam, “Producing dietary fibers from sugarcane bagasse using various chemical treatment and evaluation of their physicalchemical, structural, and functional properties,” Applied Science and Engineering Progress, vol. 17, no. 3, p. 7381, 2024, doi:  10.14416/j.asep.2024.06.002.

[56] N. Kongkum, V. Phakeenuya, and S. Kongruang, “Optimization of microcrystalline cellulose production from brewer’s spent grain by acid hydrolysis,” Applied Science and Engineering Progress, vol. 18, no. 2, p. 7624, 2025, doi:  10.14416/j.asep.2024.11.002.

[57] G. Brunow and K. Lundquist, “Functional groups and bonding patterns in lignin (including the lignin–carbohydrate complexes),” in Lignin and Lignans: Advances in Chemistry, Florida: CRC Press, pp. 267–299, 2010.

[58] K. Narayanan, P. Venkatachalam, E. J. Panakkal, P. Tantayotai, A. Tandhanskul, R. Selvasembian, S. Chuetor, and M. Sriariyanun, “Exploring ternary deep eutectic solvent pretreatment in a one‑pot process with Napier grass for bioethanol production,” BioEnergy Research, vol. 17, no. 4, pp. 2213–2225, 2024, doi: 10.1007/s12155-024-10791-y.

[59] M. Sriariyanun, M. P. Gundupalli, V. Phakeenuya, T. Phusamtisampan, Y. S. Cheng, and P. Venkatachalam, “Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms,” Journal of Applied Science and Engineering, vol. 27, no. 2, pp. 1985–2005, 2023, doi: 10.6180/ jase.202402_27(2).0001.

[60] F. R. Amin, H. Khalid, H. Zhang, S. U. Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, vol. 7, p. 108, 2017, doi: 10.1186/s13568-017-0497-1.

[61] L. K. Akula, R. K. Oruganti, D. Bhattacharyya, and K. K. Kurilla, “Treatment of Marigold flower processing wastewater using a sequential biological‑electrochemical process,” Applied Science and Engineering Progress, vol. 14, no. 4, p. 5598, 2021, doi: 10.14416/j.asep.2021.11.007.

[62] S. Khaodang, N. Suriyachai, S. Imman, T. Kreetachat, S. Chuetor, S. Wongcharee, and K. Suwannahong, “Comparative study on techno-economic analysis for various organosolv fractionation of bagasse in thailand,” Applied Science and Engineering Progress, vol. 18, no. 4, p. 7794, 2025, doi:  10.14416/j.asep.2025.06.011.

[63] D. Jose, N. Kitiborwornkul, M. Sriariyanun and K. Katam, “A review on chemical pretreatment methods of lignocellulosic biomass: Recent advances and progress,” Applied Science and Engineering Progress, vol. 15, no. 4, p. 6210, 2022, doi: 10.14416/j.asep.2022.08.001.

[64] T. Phusantisampan and N. Kitiborwornkul, “Progress in chemical pretreatment of lignocellulose biomass for applications in biorefinery,” The Journal of KMUTNB, vol. 32, pp. 1087–1101, 2022, doi: 10.14416/j.kmutnb. 2022.09.018.

[65] M. L. Torres and M. D. C. E. Lloréns, “Effect of alkaline pretreatment on anaerobic digestion of solid wastes,” Waste Management, vol. 28, no. 11, pp. 2229–2234, 2008, doi: 10.1016/ j.wasman.2008.05.009.

[66] Z. Song, G. Yang, X. Liu, Z. Yan, Y. Yuan, and Y. Liao, “Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion,” PLoS One, vol. 9, no. 4, p. e93801, 2014, doi: 10.1371/ journal.pone.0093801.

[67] S. Xie, J. P. Frost, P. G. Lawlor, G. Wu, and X. Zhan, “Effects of thermo‑chemical pre‑treatment of grass silage on methane production by anaerobic digestion,” Bioresource Technology, vol. 102, no. 19, pp. 8748–8755, 2011, doi: 10.1016/j.biortech.2011.07.046.

[68] G. W. Park, I. Kim, K. Jung, C. Seo, J. I. Han, H. N. Chang, and Y. C. Kim, “Enhancement of volatile fatty acids production from rice straw via anaerobic digestion with chemical pretreatment,” Bioprocess and Biosystems Engineering, vol. 38, pp. 1623–1627, 2015, doi: 10.1007/s00449-015-1466-9.

[69] G. Mancini, S. Papirio, P. N. Lens, and G. Esposito, “Increased biogas production from wheat straw by chemical pretreatments,” Renewable Energy, vol. 119, pp. 608–614, 2018, doi: 10.1016/j.renene.2017.11.056.

[70] M. Kaur, Y. P. Verma, and S. Chauhan, “Effect of chemical pretreatment of sugarcane bagasse on biogas production,” Materials Today: Proceedings, vol. 21, pp. 1937–1942, 2020, doi: 10.1016/j.matpr.2020.04.345.

[71] A. D. Olugbemide, L. Lajide, A. Adebayo, and B. J. Owolabi, “Enhanced biogas production from rice husk through solid‑state chemical pretreatments,” Waste and Biomass Valorization, vol. 11, no. 6, pp. 2397–2407, 2020, doi: 10.1007/s12649-018-00567-9.

[72] E. J. Panakkal, M. Sriariyanun, J. Rattanapoompinyo, P. Yasurin, K. Cheenkachorn, W. Rodiawati, P. Tantayotai, “Influence of sulfuric acid pretreatment and inhibitor of sugarcane baggasse on the production of fermentable sugar and ethanol,” Applied Science and Engineering Progress, vol. 15, no. 1, p. 5238, 2022, doi:  10.14416/ j.asep.2021.07.006.

[73] P. Tantayotai, M. P. Gundupalli, E. J. Panakkal, M. Sriariyanun, K. Rattanaporn, D. Bhattacharyya, “Differential influence of imidazolium ionic liquid on cellulase kinetics in saccharification of cellulose and lignocellulosic biomass substrate,” Applied Science and Engineering Progress, vol. 15, no. 3, p. 5510, 2022, doi: 10.14416/j.asep.2021.11.003.

[74] X. Li et al., “A comprehensive review of the strategies to improve anaerobic digestion: Their mechanism and digestion performance,” Methane, vol. 3, no. 2, pp. 227–256, 2024, doi: 10.3390/methane3020015.

[75] P. P. Dell’Omo and V. A. Spena, “Mechanical pretreatment of lignocellulosic biomass to improve biogas production: Comparison of results for giant reed and wheat straw,” Energy, vol. 203, p. 117798, 2020, doi: 10.1016/j.energy. 2020.117798.

[76] S. Behera, R. Arora, N. Nandhagopal, and S. Kumar, “Importance of chemical pretreatment for bioconversion of lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 36, pp. 91–106, 2014, doi: 10.1016/j.rser. 2014.04.014.

[77] M. Solé-Bundó, C. Eskicioglu, M. Garfí, H. Carrère, and I. Ferrer, “Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment,” Bioresource Technology, vol. 237, pp. 89–98, 2017, doi: 10.1016/j.biortech.2017.03.053.

[78] G. Y. Chen, J. Cao, Z. Z. Chang, X. M. Ye, and J. Du, “Effect of organic acids pre-treatment on physico-chemical property and biogas production of wheat straw,” Acta Energiae Solaris Sinica, vol. 36, pp. 2559–2564, 2015.

[79] C. Rodriguez, A. Alaswad, J. Mooney, T. Prescott, and A. G. Olabi, “Pre-treatment techniques used for anaerobic digestion of algae,” Fuel Processing Technology, vol. 138, pp. 765–779, 2015, doi: 10.1016/j.fuproc.2015. 06.010.

[80] C. Veluchamy and A. S. Kalamdhad, “Prerequisite—a hot air oven pretreatment for anaerobic digestion of lignocellulose waste material,” in CSBE/SCGAB 2017 Annual Conference, 2017, Art. no. CSBE17043.

[81] R. Feng, Q. Li, A. A. Zaidi, H. Peng, and Y. Shi, “Effect of autoclave pretreatment on biogas production through anaerobic digestion of green algae,” Periodica Polytechnica Chemical Engineering, vol. 65, no. 4, pp. 483–492, 2021, doi: 10.3311/PPch.16356.

[82] A. Serrano, J. A. Siles, M. A. Martín, A. F. Chica, F. S. Estévez-Pastor, and E. Toro-Baptista, “Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment,” Journal of Environmental Management, vol. 177, pp. 231–239, 2016, doi: 10.1016/j.jenvman.2016.03.019.

[83] E. Tampio, S. Ervasti, T. Paavola, S. Heaven, C. Banks, and J. Rintala, “Anaerobic digestion of autoclaved and untreated food waste,” Waste Management, vol. 34, no. 2, pp. 370–377, 2014, doi: 10.1016/j.wasman.2013.11.015.

[84] G. Shang, C. Zhang, F. Wang, L. Qiu, X. Guo, and F. Xu, “Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw—effects of temperature and retention time,” Environmental Science and Pollution Research, vol. 26, pp. 29424–29434, 2019, doi: 10.1007/s11356-019-06693-0.

[85] X. Kang, Y. Zhang, R. Lin, L. Li, F. Zhen, X. Kong, and Z. Yuan, “Optimization of liquid hot water pretreatment on hybrid Pennisetum anaerobic digestion and its effect on energy efficiency,” Energy Conversion and Management, vol. 210, p. 112718, 2020, doi: 10.1016/j.enconman.2020.112718.

[86] R. Feng, A. A. Zaidi, K. Zhang, and Y. Shi, “Optimisation of microwave pretreatment for biogas enhancement through anaerobic digestion of microalgal biomass,” Periodica Polytechnica Chemical Engineering, vol. 63, no. 1, pp. 65–72, 2019, doi: 10.3311/PPch.13057.

[87] S. Ghosh, M. P. Henry, and R. W. Christopher, “Hemicellulose conversion by anaerobic digestion,” Biomass, vol. 6, no. 4, pp. 257–269, 1985.

[88] A. Ramos, E. Monteiro, and A. Rouboa, “Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods–a review,” Energy Conversion and Management, vol. 270, p. 116271, 2022, doi: 10.1016/j.enconman.2022.116271.

[89] S. S. Ali, A. E. F. Abomohra, and J. Sun, “Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation,” Bioresource Technology, vol. 238, pp. 425–432, 2017, doi: 10.1016/j.biortech. 2017.04.095.

[90] S. Hasegawa, N. Shiota, K. Katsura, and A. Akashi, “Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion,” Water Science and Technology, vol. 41, no. 3, pp. 163–169, 2000.

[91] X. Yuan, B. Wen, X. Ma, W. Zhu, X. Wang, S. Chen, and Z. Cui, “Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method,” Bioresource Technology, vol. 154, pp. 1–9, 2014, doi: 10.1016/j.biortech.2013.12.042.

[92] J. Zhao, Y. Zheng, and Y. Li, “Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion,” Bioresource Technology, vol. 156, pp. 176–181, 2014, doi: 10.1016/j.biortech.2014.01.089.

[93] A. M. Mustafa, T. G. Poulsen, and K. Sheng, “Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion,” Applied Energy, vol. 180, pp. 661–671, 2016, doi: 10.1016/j.apenergy. 2016.08.123.

[94] E. Rouches, S. Zhou, J. P. Steyer, and H. Carrère, “White-Rot Fungi pretreatment of lignocellulosic biomass for anaerobic digestion: Impact of glucose supplementation,” Process Biochemistry, vol. 51, no. 11, pp. 1784–1792, 2016, doi: 10.1016/j.procbio.2016.08.020.

[95] Y. Zhao, C. Xu, S. Ai, H. Wang, Y. Gao, L. Yan, and W. Wang, “Biological pretreatment enhances the activity of functional microorganisms and the ability of methanogenesis during anaerobic digestion,” Bioresource Technology, vol. 290, p. 121660, 2019, doi: 10.1016/j.biortech.2019.121660.

[96] P. Basinas, J. Rusín, K. Chamrádová, K. Malachová, Z. Rybková, and Č. Novotný, “Fungal pretreatment parameters for improving methane generation from anaerobic digestion of corn silage,” Bioresource Technology, vol. 345, p. 126526, 2022, doi: 10.1016/j.biortech.2021. 126526.

[97] N. Chaitanoo, P. Aggarangsi, and S. Nitayavardhana, “Improvement of solid-state anaerobic digestion of broiler farm-derived waste via fungal pretreatment,” Bioresource Technology, vol. 332, p. 125146, 2021, doi: 10.1016/j.biortech.2021.125146.

[98] N. R. Melbinger, J. Donnellon, and H. R. Zablatzky, “Toxic effects of ammonia nitrogen in high-rate digestion [with discussion],” Water Pollution Control Federation, vol. 43, no. 8, pp. 1658–1670, 1971.

[99] S. W. Miller and G. F. Parkin, “Response of methane fermentation to continuous addition of selected industrial toxicants,” in Proceedings of the 37th Purdue Industrial Waste Conference, 1983, pp. 729–743.

[100]    C. Gallert and J. Winter, “Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: Effect of ammonia on glucose degradation and methane production,” Applied Microbiology and Biotechnology, vol. 48, pp. 405–410, 1997, doi: 10.1007/s002530051095.

[101]    I. Angelidaki and B. K. Ahring, “Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature,” Water Research, vol. 28, no. 3, pp. 727–731, 1994, doi: 10.1016/0043-1354(94)90268-0.

[102]    Y. Jiang, E. McAdam, Y. Zhang, S. Heaven, C. Banks, and P. Longhurst, “Ammonia inhibition and toxicity in anaerobic digestion: A critical review,” Journal of Water Process Engineering, vol. 32, p. 100899, 2019, doi: 10.1016/j.jwpe.2019.100899.

[103]    E. Conn and P. Stumpf, Outlines of Biochemistry, 5th ed., New York: John Wiley & Sons, 2009.

[104]    J. F. Tursman and D. J. Cork, “Influence of sulfate and sulfate-reducing bacteria on anaerobic digestion technology,” Advances in Biotechnological Processes, vol. 12, pp. 273–285, 1989.

[105]    G. D. Vogels, “Biochemistry of methane production,” in Biology of Anaerobic Microorganisms. New Jersey: Wiley, pp. 707–770, 1988.

[106]    R. E. Speece, “Anaerobic biotechnology for industrial wastewater treatment,” Environmental Science & Technology, vol. 17, no. 9, pp. 416A–427A, 1983, doi: 10.1021/es00117a001.

[107]    Z. Song, C. J. Williams, and R. G. J. Edyvean, “Coagulation and anaerobic digestion of tannery wastewater,” Process Safety and Environmental Protection, vol. 79, no. 1, pp. 23–28, 2001, doi: 10.1205/095758201750114648.

[108]    H. Jung, D. Kim, H. Choi, and C. Lee, “A review of technologies for in-situ sulfide control in anaerobic digestion,” Renewable and Sustainable Energy Reviews, vol. 157, p. 112068, 2022, doi: 10.1016/j.rser.2022.112068.

[109]     M. Florent and T. J. Bandosz, “Effects of surface heterogeneity of cobalt oxyhydroxide/graphite oxide composites on reactive adsorption of hydrogen sulfide,” Microporous and Mesoporous Materials, vol. 204, pp. 8–14, 2015, doi: 10.1016/j.micromeso.2014.12.027.

[110]    A. Choudhury and S. Lansing, “Biochar addition with Fe impregnation to reduce H2S production from anaerobic digestion,” Bioresource Technology, vol. 306, p. 123121, 2020, doi: 10.1016/j.biortech.2020.123121.

[111]    D. Kim, H. Kim, J. Kim, and C. Lee, “Co-feeding spent coffee grounds in anaerobic food waste digesters: Effects of co-substrate and stabilization strategy,” Bioresource Technology, vol. 288, p. 1215, 2019, doi: 10.1016/j.biortech.2019.121511.

Full Text: PDF

DOI: 10.14416/j.asep.2025.07.008

Refbacks

  • There are currently no refbacks.