Page Header

Sustainable Aviation Fuel: A Greener Future for Aviation Industry

Bhushan S. Shrirame, Sunil K. Maity, Santi Chuetor

Abstract


-

[1]    B. S. Shrirame and S. K. Maity, “Sustainable aviation fuel range branched alkanes via hydrodeoxygenation of furfural-derived trifurylmethane over mesoporous NiW-ZrO2 composite catalysts,” Biomass Bioenergy, vol. 196, 2025, doi: 10.1016/j.biombioe.2025.107759.

[2]    A. Çakan, B. Kiren, and N. Ayas, “Hydrodeoxygenation of safflower oil over cobalt-doped metal oxide catalysts for bio-aviation fuel production,” Molecular Catalysis, vol. 546, 2023, doi: 10.1016/j.mcat.2023.113219.

[3]    D. Xue, X. M. Chen, and S. Yu, “Sustainable aviation for a greener future,” Communications Earth & Environment, vol. 6, 2025, doi: 10.1038/ s43247-025-02222-3.

[4]    F. C. Barbosa, “Aircraft engine technology review - The pathways for an efficient, cleaner and quieter aviation industry,” SAE Mobilus, 2020, doi: 10.4271/2019-36-0175.

[5]    Sustainable Aero Lab. “The state of the Sustainable Aviation Fuel (SAF) company ecosystem.” sustainable.aero. https://www.sustainable.aero/ saf-study (accessed Jul. 7, 2025).

[6]    C. Masotti Guerra and G. Meggiato, “Feasibility of increasing major airlines,” M.S. thesis, Graduate School, University of Gothenburg, Gothenburg, Sweden, 2023.

[7]    I. Raheem, A. Tawai, S. Amornraksa, M. Sriariyanun, A. Joshi, M. Gupta, W. Pongprayoon, D. Bhattacharyya, and S. K. Maity, “A comprehensive review of approaches in carbon capture, and utilization to reduce greenhouse gases,” Applied Science and Engineering Progress, vol. 18, no. 2, 2025, doi: 10.14416/j.asep.2024.11.004.

[8]    S. Bube, N. Bullerdiek, S. Voß, and M. Kaltschmitt, “Kerosene production from power-based syngas – A technical comparison of the Fischer-Tropsch and methanolpathway,” Fuel, vol. 366, 2024, doi: 10.1016/j.fuel.2024.131269.

[9]    J. Yang, Y. Chang, P. Ye, Z. Zhang, C. Zhang, and B. Teng, “Progress of biomass gasification and Fischer-Tropsch synthesis to aviation kerosene,” Bioresource Technology, vol. 434, 2025, doi: 10.1016/j.biortech.2025.132768.

[10] N. Yilmaz and A. Atmanli, “Sustainable alternative fuels in aviation,” Energy, vol. 140, pp. 1378–1386, 2017, doi: 10.1016/j.energy. 2017.07.077.

[11] T. K. Hari, Z. Yaakob, and N. N. Binitha, “Aviation biofuel from renewable resources: Routes, opportunities and challenges,” Renewable and Sustainable Energy Reviews, vol. 42, pp. 1234–1244, 2015, doi: 10.1016/j.rser. 2014.10.095.

[12] J. Yang, Z. Xin, Q. (Sophia) He, K. Corscadden, and H. Niu, “An overview on performance characteristics of bio-jet fuels,” Fuel, vol. 237, pp. 916–936, 2019, doi: 10.1016/j.fuel.2018. 10.079.

[13] J. I. C. Lau, Y. S. Wang, T. Ang, J. C. F. Seo, S. N. B. A. Khadaroo, J. J. Chew, A. N. K. Lup, and J. Sunarso, “Emerging technologies, policies and challenges toward implementing sustainable aviation fuel (SAF),” Biomass Bioenergy, vol. 186, 2024, doi: 10.1016/j.biombioe.2024.107277.

[14] N. A. A. Qasem, A. Mourad, A. Abderrahmane, Z. Said, O. Younis, K. Guedri, and L. Kolsi, “A recent review of aviation fuels and sustainable aviation fuels,” Journal of Thermal Analysis and Calorimetry, vol. 149, pp. 4287–4312, 2024, doi: 10.1007/s10973-024-13027-5.

[15] P. Bi, J. Wang, Y. Zhang, P. Jiang, X. Wu, J. Liu, H. Xue, T. Wang, and Q. Li, “From lignin to cycloparaffins and aromatics: Directional synthesis of jet and diesel fuel range biofuels using biomass,” Bioresource Technology, vol. 183, pp. 10–17, 2015, doi: 10.1016/j.biortech. 2015.02.023.

[16] K. S. Ng, D. Farooq, and A. Yang, “Global biorenewable development strategies for sustainable aviation fuel production,” Renewable and Sustainable Energy Reviews, vol. 150, 2021, doi: 10.1016/j.rser.2021.111502.

[17] M. Iuliano, C. Cirillo, A. Zarli, P. Ciambelli, and M. Sarno, “Selective hydrogenation of vegetable oil over supported noble metal nanocatalyst,” Inorganic Chemistry Communications, vol. 160, 2024, doi: 10.1016/j.inoche.2023.111974.

[18] C. Zhu, M. Jing, Z. Guo, X. Shi, Y. Hu, Z. Yang, and Z. Chu, “Nickel-supported cellulose-based porous composite for catalytic hydrogenation of oleic acid,” International Journal of Biological Macromolecules, vol. 307, 2025, doi: 10.1016/ j.ijbiomac.2025.141913.

[19] P. Kumar, S. K. Maity, and D. Shee, “Role of NiMo alloy and Ni species in the performance of NiMo/Alumina catalysts for hydrodeoxygenation of stearic acid: A kinetic study,” ACS Omega, vol. 4, pp. 2833–2843, 2019, doi: 10.1021/ acsomega.8b03592.

[20] P. Kumar, S. R. Yenumala, S. K. Maity, and D. Shee, “Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports,” Applied Catalysis A: General, vol. 471, pp. 28–38, 2014, doi: 10.1016/j.apcata. 2013.11.021.

[21] P. Baral, V. Kumar, and D. Agrawal, “Emerging trends in high-solids enzymatic saccharification of lignocellulosic feedstocks for developing an efficient and industrially deployable sugar platform,” Critical Reviews in Biotechnology, vol. 42, pp. 873–891, 2022, doi: 10.1080/ 07388551.2021.1973363.

[22] C. M. Mendieta, J. Kruyeniski, M. E. Vallejos, and M. C. Area, “Is it possible to produce sustainable aviation fuels from lignocellulosic biomass waste?,” Bioresources, vol. 20, pp. 11–14, 2024, doi: 10.15376/biores.20.1.11-14.

[23] M. A. H. Khan, S. Bonifacio, J. Clowes, A. Foulds, R. Holland, J. C. Matthews, C. J. Percival, and D. E. Shallcross, “Investigation of biofuel as a potential renewable energy source,” Atmosphere, vol. 12, 2021, doi: 10.3390/atmos 12101289.

[24] A. Bauen, N. Bitossi, L. German, A. Harris, K. Leow, “Sustainable aviation fuels,” Johnson Matthey Technology Review, vol. 64, pp. 263–278, 2020, doi: 10.1595/205651320X15816756 012040.

[25] F. Wang and D. Rijal, “Sustainable aviation fuels for clean skies: Exploring the potential and perspectives of strained hydrocarbons,” Energy Fuels, vol. 38, pp. 4904–4920, 2024, doi: 10.1021/acs.energyfuels.3c04935.

[26] S. K. Maity, “Opportunities, recent trends and challenges of integrated biorefinery: Part I,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 1427–1445, 2015, doi: 10.1016/j.rser. 2014.11.092.

[27] B. S. Shrirame and S. K. Maity, “Hydrodeoxygenation of C15 furanic precursor over mesoporous Ni/g-Al2O3 composite catalysts for the production of sustainable aviation fuel,” Catalysis Today, vol. 442, 2024, doi: 10.1016/ j.cattod.2024.114917.

[28] A. Kunamalla, B. S. Shrirame, and S. K. Maity, “Production of jet fuel-range hydrocarbon biofuel by hydroxyalkylation–alkylation of furfural with 2-methylfuran and hydrodeoxygenation of C15 fuel precursor over a Ni/g-Al2O3 catalyst: A reaction mechanism,” Energy Advances, vol. 1, pp. 99–112, 2022, doi: 10.1039/D1YA00078K.

[29] A. Kunamalla, S. Mailaram, B. S. Shrirame, P. Kumar, and S. K. Maity, “Hydrocarbon biorefinery: A sustainable approach,” in Hydrocarbon Biorefinery, Amsterdam, Netherlands: Elsevier, 2022, pp. 1–44, doi: 10.1016/B978-0-12-823306-1.00004-2.

[30] M. Sriariyanun, M. P. Gundupalli, V. Phakeenuya, T. Phusamtisampan, Y. S. Cheng, and P. Venkatachalam “Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms,” Journal of Applied Science and Engineering, vol. 27, no. 2, pp. 1985–2005, 2023, doi: 10.6180/jase. 202402_27(2).0001.  

[31] L. Lisa, “Model-based technology roadmapping of sustainable aviation technologies,” M.S. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, MA, USA, 2023.

[32] S. Areeya, E. J. Panakkal, P. Kunmanee, A. Tawai, S. Amornraksa, M. Sriariyanun, A. Kaoloun, N. Hartini, Y. S. Cheng, M. Kchaou, S. Dasari, and M. P. Gundupalli, “A review of sugarcane biorefinery: From waste to value-added products,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, doi: 10.14416/j.asep.2024.06.004.

[33] R. J. P. Latiza and R. V. Rubi, “Circular economy integration in 1G+2G sugarcane bioethanol production: Application of carbon capture, utilization and storage, closed-loop systems, and waste valorization for sustainability,” Applied Science and Engineering Progress, vol. 18, no. 1, 2025, doi: 10.14416/j.asep.2024.07.005.

Full Text: PDF

DOI: 10.14416/j.asep.2025.07.006

Refbacks

  • There are currently no refbacks.