Page Header Logo Applied Science and Engineering Progress

Pickering Emulsions of Kaffir Lime Oil Stabilized by Modified Tapioca Starch: Impact of Particle Size Reduction Methods and Octenyl Succinic Anhydride Grafting

Nuttida Kamboon, Sukanya Thepwatee, Suthida Boonsith

Abstract


The main challenges in using tapioca starch for pickering emulsions are its native micron-sized particles, which are too large to stabilize small oil droplets, and its highly hydrophilic nature, which limits its ability to balance oil-water interfaces. This study explores the modification of tapioca starch to encapsulate kaffir lime oil (KO) in pickering emulsions, emphasizing particle size reduction and surface functionalization. Methods included enzymatic hydrolysis (alpha-amylase, alpha-amylase with glucoamylase, and pullulanase), sulfuric acid hydrolysis, and ethanol precipitation. Ethanol precipitation emerged as the most effective, producing ultra-fine particles (96–150 nm) with superior emulsion stability. Surface analysis revealed that enzymatic treatments affected particle morphology, while ethanol precipitation formed the smallest, smoothest particles and the lowest crystallinity (8.4%), compared to sulfuric acid hydrolysis, which showed the highest crystallinity (37.7%). Surface functionalization with octenyl succinic anhydride (OSA) enhanced starch hydrophobicity, confirmed by Fourier-transform infrared (FT-IR) spectroscopy and increased water contact angles. Pickering emulsions prepared with ethanol-precipitated starch esterified with 5% OSA showed the highest stability. Incorporating medium-chain triglyceride (MCT) oil at a KO/MCT ratio of 0.4/0.8 further improved droplet size and emulsion stability. These findings highlight ethanol-precipitated and OSA-modified tapioca starch as an effective bio-surfactant for stabilizing Pickering emulsions, with potential for sustainable and high-value industrial applications.

Keywords



[1]    H. Lu and Y. Tian, “Nanostarch: Preparation, modification, and application in Pickering emulsions,” Journal of Agricultural and Food Chemistry, vol. 69, pp. 6929–6942, Jun. 2021, doi: 10.1021/acs.jafc.1c01244.

[2]    R. L. J. Almeida, S. S. Monteiro, N. C. Santos, N. S. Rios, and E. S. dos Santos, “Starch modification and its application in Pickering emulsion stabilization: A review,” Journal of Food Measurement and Characterization, vol. 18, pp. 4984–5003, May 2024, doi: 10.1007/s11694-024-02550-6.

[3]    C. Guida, A. C. Aguiar, and R. L. Cunha, “Green techniques for starch modification to stabilize Pickering emulsions: A current review and future perspectives,” Current Opinion in Food Science, vol. 38, pp. 52–61, Apr. 2021, doi: 10.1016/j. cofs.2020.10.017.

[4]    F. Zhu, “Starch based Pickering emulsions: Fabrication, properties, and applications,” Trends in Food Science & Technology, vol. 85, pp. 129–137, Mar. 2019, doi: 10.1016/j.tifs. 2019.01.012.

[5]    L. Guo, H. Chen, Y. Zhang, S. Yan, X. Chen, and X. Gao, “Starch granules and their size distribution in wheat: Biosynthesis, physicochemical properties and their effect on flour-based food systems,” Computational and Structural Biotechnology Journal, vol. 21, pp. 4172–4186, Aug. 2023, doi: 10.1016/j.csbj. 2023.08.019.

[6]    R. Jia, C. Cui, L. Gao, Y. Qin, N. Ji, L. Dai, Y. Wang, L. Xiong, R. Shi, and Q. Sun, “A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality,” Carbohydrate Polymers, vol. 321, p. 121260, Aug. 2023, doi: 10.1016/j.carbpol.2023.121260.

[7]    P. P. Wang, Z. G. Luo, and T. M. Tamer, “Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of Pickering emulsions formulated by modified rice starch,” Carbohydrate Polymers, vol. 228, p. 115389, Sep. 2020, doi: 10.1016/j.carbpol.2019.115389.

[8]    H. W. Choi and H.-S. Kim, “Hydroxypropylation and acetylation of rice starch: Effects of starch protein content,” Food Science and Biotechnology, vol. 31, no. 9, pp. 1169–1177, Jun. 2022, doi: 10.1007/s10068-022-01106-y.

[9]    Z. Wang, P. Mhaske, A. Farahnaky, S. Kasapis, M. Majzoobi, “Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review,” Food Hydrocolloids, vol. 129, p. 107542, Jan. 2022, doi: 10.1016/j.foodhyd.2022.107542.

[10] S. Das et al., “Advances of cassava starch-based composites in novel and conventional drug delivery systems: a state-of-the-art review,” RSC Pharmaceutics, vol. 1, no. 2, pp. 182–203, Mar. 2024, doi: 10.1039/D3PM00008G.

[11] D. Le Corre, J. Bras, and A. Dufresne, “Starch nanoparticles: A review,” Biomacromolecules, vol. 11, pp. 1139–1153, Apr. 2010, doi: 10.1021/bm901428y.

[12] N. Atichokudom-chai, S. Shobsngob, P. Chinachoti, and S. Varavinit, “A study of some physicochemical properties of high-crystalline tapioca starch,” Starch - Stärke, vol. 53, pp. 577–581, Oct. 2001, doi: 10.1002/1521-379X(200111)53:11<577::AID-STAR577>3.0.CO;2-0.

[13] P. Chen, F. Xie, L. Zhao, Q. Qiao, and X. Liu, “Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content,” Food Hydrocolloids, vol. 69, pp. 359–368, Aug. 2017, doi: 10.1016/j.foodhyd.2017. 03.003.

[14] Y. Chen, S. Huang, Z. Tang, X. Chen, and Z. Zhang, “Structural changes of cassava starch granules hydrolyzed by a mixture of α-amylase and glucoamylase,” Carbohydrate Polymers, vol. 85, pp. 272–275, Apr. 2011, doi: 10.1016/ j.carbpol.2011.01.047.

[15] É.K.d.C. Costa, C.O. de Souza, J.B.A. da Silva, and J.I. Druzian, “Hydrolysis of part of cassava starch into nanocrystals leads to increased reinforcement of nanocomposite films,” Journal of Applied Polymer Science, vol. 134, p. 45311, Jul. 2017, doi: 10.1002/app.45311.

[16] S. L. Hii, J.S. Tan, T.  C. Ling, and A. B. Ariff, “Pullulanase: Role in starch hydrolysis and potential industrial applications,” Enzyme Research, vol. 2012, p. 921362, Sep. 2012, doi: 10.1155/2012/921362.

[17] R. Wongsagonsup, T. Pujchakarn, S. Jitrakbumrung, W. Chaiwat, A. Fuongfuchat, S. Varavinit, S. Dangtip, and M. Suphantharika, “Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product, Carbohydrate Polymers, vol. 101, pp. 656–665, Jan. 2014, doi: 10.1016/j.carbpol.2013.09.100.

[18]  N. Atichokudomchai and S. Varavinit, “Characterization and utilization of acid-modified cross-linked Tapioca starch in pharmaceutical tablets,” Carbohydrate Polymers, vol. 53, pp. 263–270, Aug. 2003, doi: 10.1016/S0144-8617(03)00070-5.

[19] Q. Wang, L. Li, and X. Zheng, A review of milling damaged starch: “Generation, measurement, functionality and its effect on starch-based food systems,” Food Chemistry, vol 315, pp. 126267, Jun. 2020, doi: 10.1016/ j.foodchem.2020.126267.

[20] S. P. Bangar, A. Singh, A. O. Ashogbon, and H. Bobade, “Ball-milling: A sustainable and green approach for starch modification,” International Journal of Biological Macromolecules, vol. 237, p. 124069, May 2023, doi: 10.1016/j.ijbiomac. 2023.124069.

[21] X. Guo, X. Wang, Y. Wei, P. Liu, X. Deng, Y. Lei, and J. Zhang, “Preparation and properties of films loaded with cellulose nanocrystals stabilized Thymus vulgaris essential oil Pickering emulsion based on modified tapioca starch/polyvinyl alcohol,” Food Chemistry, vol. 435, p. 137597, Mar. 2024, doi: 10.1016/j. foodchem.2023.137597.

[22] B. Pang, H. Liu, and K. Zhang, “Recent progress on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles,” Advances in Colloid and Interface Science, vol. 296, p. 102522, Oct. 2021, doi: 10.1016/j.cis. 2021.102522.

[23] H. Zhang and Z. Jin, “Preparation of resistant starch by hydrolysis of maize starch with pullulanase,” Carbohydrate Polymers, vol. 83, pp. 865–867, Jan. 2011, doi: 10.1016/j.carbpol. 2010.08.066.

[24] S. Ge, L. Xiong, M. Li, J. Liu, J. Yang, R. Chang, C. Liang, and Q. Sun, “Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size,” Food Chemistry, vol. 234, pp. 339–347, Nov. 2017, doi: 10.1016/j.foodchem. 2017.04.150.

[25] F. Zhou, M. Dong, J. Huang, G. Lin, J. Liang, S. Deng, C. Gu, and Q. Yang, “Preparation and physico-chemical characterization of OSA-modified starches from different botanical origins and study on the properties of Pickering emulsions stabilized by these starches,” Polymers, vol. 15, p. 706, Jan. 2023, doi: 10.3390/polym15030706.

[26] Z.-Y. Yu, S.-W. Jiang, Z. Zheng, X.-M. Cao, Z.-G. Hou, J.-J. Xu, H.-L. Wang, S.-T. Jiang, and L.-J. Pan, “Preparation and properties of OSA-modified taro starches and their application for stabilizing Pickering emulsions,” International Journal of Biological Macromolecules, vol. 137, pp. 277–285, Sep. 2019, doi: 10.1016/j.ijbiomac. 2019.06.230.

[27] A. R. Mukurumbira, R. A. Shellie, R. Keast, E.A. Palombo, and S.R. Jadhav, “Encapsulation of essential oils and their application in antimicrobial active packaging,” Food Control, vol. 136, p. 108883, Jun. 2022, doi: 10.1016/ j.foodcont.2022.108883.

[28] Y. Cahyana, Y. S .E. Putri, D. S. Solihah, F. S. Lutfi, R. M. Alqurashi, and H. Marta, “Pickering emulsions as vehicles for bioactive compounds from essential oils,” Molecules, vol. 27, p. 7872, Nov. 2022, doi: 10.3390/molecules27227872.

[29] H. Majeed, Y.-Y. Bian, B. Ali, A. Jamil, U. Majeed, Q. F. Khan, K. J. Iqbal, C. F. Shoemaker, and Z. Fang, “Essential oil encapsulations: Uses, procedures, and trends,” RSC Advances, vol. 5, pp. 58449–58463, Jun. 2015, doi: 10.1039/C5RA06556A.

[30] B. Horváth, S. Pál, and A. Széchenyi, “Preparation and in vitro diffusion study of essential oil Pickering emulsions stabilized by silica nanoparticles,” Flavour and Fragrance Journal, vol. 33, pp. 385–396, Aug. 2018, doi: 10.1002/ffj.3463.

[31] A. E. Asbahani, K. Miladi, W. Badri, M. Sala, E. H. A. Addi, H. Casabianca, A. E. Mousadik, D. Hartmann, A. Jilale, F. N. R. Renaud, and A. Elaissari, “Essential oils: From extraction to encapsulation,” International Journal of Pharmaceutics, vol. 483, pp. 220–243, Apr. 2015, doi: 10.1016/j.ijpharm.2014.12.069.

[32] C. Burgos-Díaz, F. Leal-Calderon, Y. Mosi-Roa, M. Chacón-Fuentes, K. Garrido-Miranda, M. Opazo-Navarrete, A. Quiroz, and M. Bustamante, “Enhancing the retention and oxidative stability of volatile flavors: A novel approach utilizing O/W Pickering emulsions based on agri-food byproducts and spray-drying,” Foods, vol. 13, p. 1326, Apr. 2024, doi:10.3390/foods13091326.

[33] Y. Cheng, X. Cai, X. Zhang, Y. Zhao, R. Song, Y. Xu, and H. Gao, “Applications in Pickering emulsions of enhancing preservation properties: Current trends and future prospects in active food packaging coatings and films,” Trends in Food Science and Technology, vol. 151, p. 104643, Sep. 2024, doi: 10.1016/j.tifs.2024. 104643.

[34] N. Quyen, T. Ngan, H. Phong, T. Hien, and L. Dung, “Extraction of kaffir lime (Citrus hystrix DC.) essential oil by steam distillation and evaluation of chemical constituents,” in IOP Conference Series: Materials Science and Engineering, May 2020, vol. 991, p. 012015, doi: 10.1088/1757-899X/991/1/012015.

[35] B. Guo, C. Liu, L. Grossmann, and J. Weiss, “Pickering emulsion stabilized by hydrolyzed starch: Effect of the molecular weight,” Journal of Colloid and Interface Science, vol. 612, pp. 525–535, Apr. 2022, doi: 10.1016/j.jcis.2021.12. 185.

[36] R. Liang, Y. Jiang, W. Yokoyama, C. Yang, G. Cao, and F. Zhong, “Preparation of Pickering emulsions with short, medium and long chain triacylglycerols stabilized by starch nanocrystals and their in vitro digestion properties,” RSC Advances, vol. 6, pp. 99496–99508, Aug. 2016, doi: 10.1016/j.carbpol.2020.116405.

[37] Y. Qin, C. Liu, S. Jiang, L. Xiong, and Q. Sun, “Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type,” Industrial Crops and Products, vol. 87, pp. 182–190, Sep. 2016, doi: 10.1016/j.indcrop.2016.04.038.

[38] X. Song, G. He, H. Ruan, and Q. Chen, “Preparation and properties of octenyl succinic anhydride modified early indica rice starch,” Starch - Stärke, vol. 58, pp. 109–117, Feb. 2006, doi: 10.1002/star.200500444.

[39] H. Dong, Q. Zhang, J. Gao, L. Chen, and T. Vasanthan, “Comparison of morphology and rheology of starch nanoparticles prepared from pulse and cereal starches by rapid antisolvent nanoprecipitation,” Food Hydrocolloids, vol. 119, p. 106828, Oct. 2021, doi: 10.1016/ j.foodhyd.2021.106828.

[40] H. Li, Y. Ma, L. Yu, H. Xue, Y. Wang, J. Chen, and S. Zhang, “Construction of octenyl succinic anhydride modified porous starch for improving bioaccessibility of β-carotene in emulsions,” RSC Advances, vol. 10, pp. 8480–8489, Feb. 2020, doi: 10.1039/C9RA10079B.

[41] U.A. Basilio-Cortés, L. González-Cruz, G. Velazquez, G. Teniente-Martínez, C. A. Gómez-Aldapa, J. Castro-Rosas, and A. Bernardino-Nicanor, “Effect of dual modification on the spectroscopic, calorimetric, viscosimetric and morphological characteristics of corn starch,” Polymers, vol. 11, p. 333, Feb. 2019, doi: 10.3390/polym11020333.

[42] M. J. dos Santos Alves, P. M. C. Torres de Freitas, A. R. Monteiro, and G. A. Valencia, “Impact of the acidified hydroethanolic solution on the physicochemical properties of starch nanoparticles produced by anti-solvent precipitation,” Starch - Stärke, vol. 73, p. 2100034, Sep. 2021, doi: 10.1002/star.202100034.

[43] J. M. Fang, P. A. Fowler, C. Sayers, and P. A. Williams, “The chemical modification of a range of starches under aqueous reaction conditions, Carbohydrate Polymers, vol. 55, pp. 283–289, Feb. 2004, doi: 10.1016/j.carbpol.2003.10.003.

[44] L. Dai, C. Sun, Y. Wei, L. Mao, and Y. Gao, “Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles,” Food Hydrocolloids, vol. 74, pp. 239–248, Jan. 2018, doi: 10.1016/j.foodhyd. 2017.07.040.

[45] X. Liu, H. Luan, Y. Jinglin, S. Wang, S. Wang, and L. Copeland, “A method for characterizing short-range molecular order in amorphous starch,” Carbohydrate Polymers, vol. 242, p. 116405, Aug. 2020. doi: 10.1016/j.carbpol.2020.116405.

[46] J. Zhang, C. Ran, X. Jiang, and J. Dou, “Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch,” LWT, vol. 152, p. 112320, Dec. 2021, doi: 10.1016/j.lwt.2021.112320.

[47] L. Niedner and G. Kickelbick, “Amphiphilic titania Janus nanoparticles containing ionic groups prepared in oil–water Pickering emulsion,” Nanoscale, vol. 16, pp. 7396–7408, Feb. 2024, doi: 10.1039/D3NR04907H.

[48] S. Meyer, S. Berrut, T. I. J. Goodenough, V. S. Rajendram, V. J. Pinfield, and M. J. W. Povey, “A comparative study of ultrasound and laser light diffraction techniques for particle size determination in dairy beverages,” Measurement Science and Technology, vol. 17, p. 289, Jan. 2006, doi: 10.1088/0957-0233/17/2/009.

[49] S. M. Chisenga, T. S. Workneh, G. Bultosa, and B. A. Alimi, “Progress in research and applications of cassava flour and starch: a review,” Journal of Food Science and Technology, vol. 56, pp. 2799–2813, May 2019, doi: 10.1007/s13197-019-03814-6.

[50] M. Miao, B. Jiang, and T. Zhang, “Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch,” Carbohydrate Polymers, vol. 76, pp. 214–221, Mar. 2009, doi: 10.1016/j.carbpol.2008.10.007.

[51] J. Zhi, S. Huang, X. Zhu, H. J. Adra, K. Luo, and Y. R. Kim, “Impact of solvent polarity on the morphology, physicochemical properties, and digestibility of A-type resistant starch particles,” Food Chemistry, vol. 418, p. 135942, Mar. 2023, doi: 10.1016/j.foodchem.2023.135942.

[52] S. Hedayati, M. Niakousari, and Z. Mohsenpour, “Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment,” International Journal of Biological Macromolecules, vol. 143, pp. 136–142, Jan. 2020, doi: 10.1016/j.ijbiomac.2019.12.003.

[53] S.F. Chin, S.C. Pang, and S.H. Tay, “Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method,” Carbohydrate Polymers, vol. 86, pp. 1817–1819, Oct. 2011, doi: 10.1016/j.carbpol.2011.07.012.

[54] W. D. C. Chacon, K. T. dos Santos Lima, G. A. Valencia, and A. C. A. Henao, “Physicochemical properties of potato starch nanoparticles produced by anti-solvent precipitation,” Starch - Stärke, vol. 73, p. 2000086, Sep. 2021, doi: 10.1002/star.202000086.

[55] S. Huang, C. Chao, J. Yu, L. Copeland, and S. Wang, New insight into starch retrogradation: “The effect of short-range molecular order in gelatinized starch,” Food Hydrocolloids, vol. 120, p. 106921, Nov. 2021, doi: 10.1016/j.foodhyd. 2021.106921.

[56] B. Zhang, S. Dhital, E. Haque, and M. J. Gidley, “Preparation and characterization of gelatinized granular starches from aqueous ethanol treatments,” Carbohydrate Polymers, vol. 90, pp. 1587–1594, Nov. 2012, doi: 10.1016/j. carbpol.2012.07.035.

[57] Y. N. Shariffa, A. A. Karim, A. Fazilah, and I.S.M. Zaidul, “Enzymatic hydrolysis of granular native and mildly heat-treated tapioca and sweet potato starches at sub-gelatinization temperature,” Food Hydrocolloids, vol. 23, no. 2, pp. 434–440, Mar. 2009, doi: 10.1016/ j.foodhyd.2008.03.009.

[58] K. Prompiputtanapon, W. Sorndech, and S. Tongta, “Surface Modification of Tapioca Starch by Using the Chemical and Enzymatic Method,” Starch - Stärke, vol. 72, no. 3–4, p. 1900133, Dec. 2020, doi: 10.1002/star.201900133.

[59] Z. Harun et al., “Acid hydrolysis and optimization techniques for nanoparticles preparation: Current review,” Applied Biochemistry and Biotechnology, vol. 194, no. 8, pp. 3779–3801, Apr. 2022, doi: 10.1007/s12010-022-03932-6.

[60] C. Mutungi, L. Passauer, C. Onyango, D. Jaros, and H. Rohm, “Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy,” Carbohydrate Polymers, vol. 87, pp. 598–606, Jan. 2012, doi: 10.1016/ j.carbpol.2011.08.032.

[61] R. Kizil, J. Irudayaraj, and K. Seetharaman, “Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy,” Journal of Agricultural and Food Chemistry, vol. 50, pp. 3912–3918, Jun. 2002, doi: 10.1021/jf011652p.

[62] L. Guo, H. Li, L. Lu, F. Zou, H. Tao, and B. Cui, “The role of sequential enzyme treatments on structural and physicochemical properties of cassava starch granules,” Starch - Stärke, vol. 71, p. 1800258, Feb. 2019, doi: 10.1002/star. 201800258.

[63] W.  S. Ratnayake and D.S. Jackson, “Starch gelatinization,” Advances in Food and Nutrition Research, vol. 55, pp. 221–268, Sep. 2008, doi: 10.1016/S1043-4526(08)00405-1.

[64] S. Jiang, L. Dai, Y. Qin, L. Xiong, and Q. Sun, “Preparation and characterization of octenyl succinic anhydride modified taro starch nanoparticles,” PLOS One, vol. 11, p. e0150043, Feb. 2016, doi: 10.1371/journal.pone.0150043.

[65] Y. Zhu, C. Du, F. Jiang, W. Hu, X. Yu, and S. K. Du, “Pickering emulsions stabilized by starch nanocrystals prepared from various crystalline starches by ultrasonic assisted acetic acid: Stability and delivery of curcumin,” International Journal of Biological Macromolecules, vol. 267, p. 131217, May 2024. doi: 10.1016/ j.ijbiomac.2024.131217.

[66] H. Yang and J. Irudayaraj, “Characterization of semisolid fats and edible oils by Fourier transform infrared photoacoustic spectroscopy,” Journal of the American Oil Chemists’ Society, vol. 77, pp. 291–295, Mar. 2000, doi: 10.1007/ s11746-000-0048-y.

[67] J. No and M. Shin, “Preparation and characteristics of octenyl succinic anhydride-modified partial waxy rice starches and encapsulated paprika pigment powder,” Food Chemistry, vol. 295, pp. 466–474, Oct. 2019, doi: 10.1016/j.foodchem.2019.05.064.

[68] B. Zhang, J.-Q. Mei, B. Chen, and H.-Q. Chen, “Digestibility, physicochemical and structural properties of octenyl succinic anhydride-modified cassava starches with different degree of substitution,” Food Chemistry, vol. 229, pp. 136–141, Aug. 2017, doi: 10.1016/j.foodchem. 2017.02.061.

[69] M. Lopez-Silva, L. A. Bello-Perez, E. Agama-Acevedo, and J. Alvarez-Ramirez, “Effect of amylose content in morphological, functional and emulsification properties of OSA modified corn starch,” Food Hydrocolloids, vol. 97, p. 105212, Dec. 2019, doi: 10.1016/j.foodhyd. 2019.105212.

[70]  F. Kerdmuanglek, T. Chomtong, S. Boonsith, T. Chutimasakul, J. Iemsam-Arng, and S. Thepwatee, “Non-ionic surfactant-assisted controlled release of oxyresveratrol on dendritic fibrous silica for topical applications,” Journal of Colloid and Interface Science, vol. 646, pp. 342–353, Sep. 2023, doi: 10.1016/ j.jcis.2023.05.050.

Full Text: PDF

DOI: 10.14416/j.asep.2025.08.004

Refbacks

  • There are currently no refbacks.