Page Header Logo Applied Science and Engineering Progress

Valorization of Jellyfish (Rhopilema hispidum) By-Products for Bioactive Peptides with Antibacterial, Enzyme Inhibitory, and Low Cytotoxic Activities

Pratchaya Muangrod, Wiriya Charoenchokpanich, Benjawan Thumthanaruk, Vilai Rungsardthong, Sittiruk Roytrakul, Sawanya Charoenlappanit, Suthathip Kittisenachai, Benjamaporn Wonganu, Federico Casanova

Abstract


The escalating concern regarding antibiotic resistance and metabolic disorders has catalyzed the search for natural compounds with multifunctional bioactivities. Marine-derived peptides have surfaced as promising candidates due to their diverse structures and bioactive properties. This study investigates the enzymatic hydrolysis of low-cost salted jellyfish (Rhopilema hispidum) by-products using pepsin to produce bioactive peptides with multifunctional attributes. The resulting hydrolysates were purified through reverse-phase and ion exchange chromatography and assessed for their antibacterial activity against Escherichia coli, Vibrio parahaemolyticus, and Staphylococcus aureus. Among the synthesized peptides, NQKAMQELNE exhibited significant antibacterial effects against E. coli (28.95%) and S. aureus (51.93%) and demonstrated substantial inhibitory actions on α-amylase (100.00%) and α-glucosidase (46.99%). Additionally, PFTMYFLL displayed remarkable inhibitory activity against V. parahaemolyticus (42.88%). Importantly, all five synthesized peptides—NQKAMQELNE, TDSPAPSETTD, EQIYPMGEGDEL, PFTMYFLL, and PMETDDQPNN—exhibited low hemolytic activity (4.14–7.12%), indicating minimal cytotoxicity and a favorable safety profile. Mechanistic insights suggest that the antibacterial effects of these peptides may arise from their capacity to disrupt vital intracellular microbial processes. This research addresses environmental and economic challenges by valorizing underutilized marine by-products, thereby contributing to developing safe, natural, and multifunctional bioactive compounds. These findings highlight the potential of jellyfish-derived peptides as functional ingredients in the food and pharmaceutical industries.

Keywords



[1]    I. F. Bezar, A. A. Mashruwala, J. M. Boyd, and A. M. Stock, “Drug-like fragments inhibit agr-mediated virulence expression in Staphylococcus aureus,” Scientific Reports, vol. 9, no. 1, May 2019, Art. no. 6786, doi: 10.1038/s41598-019-42853-z.

[2]    A. H. Havelaar et al., “World health organization global estimates and regional comparisons of the burden of foodborne disease in 2010,” PLoS Medicine, vol. 12, no. 12, Dec. 2015, Art. no. e1001923, doi:10.1371/journal.p med.1001923.

[3]    E. Abebe, G. Gugsa, and M. Ahmed, “Review on major food‐borne zoonotic bacterial pathogens,” Journal of Tropical Medicine, vol. 2020, no. 1, Jun. 2020, Art. no. 4674235, doi: 10.1155/202 0/4674235.

[4]    T. Bintsis, “Foodborne pathogens,” AIMS Microbiology, vol. 3, no. 3, pp. 529–563, Jun. 2017, doi: 10.3934/microbiol.2017.3.529.

[5]    Z. Li, S. You, R. Mao, Y. Xiang, E. Cai, H. Deng, J. Shen, and X. Qi, “Architecting polyelectrolyte hydrogels with Cu-assisted polydopamine nanoparticles for photothermal antibacterial therapy,” Materials Today Bio, vol. 15, Jun. 2022, Art. no. 100264, doi: 10.1016/j.mtbio.20 22.100264.

[6]    M. Rima, M. Rima, Z. Fajloun, J. M. Sabatier, B. Bechinger, and T. Naas, “Antimicrobial peptides: A potent alternative to antibiotics,” Antibiotics, vol. 10, no. 9, Sep. 2021, Art. no. 1095, doi: 10.3390/antibiotics10091095.

[7]    H. G. Floss, “Antibiotic biosynthesis: From natural to unnatural compounds,” Journal of Industrial Microbiology and Biotechnology, vol. 27, no. 3, pp. 183–194, Sep. 2001, doi: 10.103 8/sj.jim.7000069.

[8]    M. Movassaghi and W. A. V. D. Donk, “Synthesis of antibiotics and related molecules,” The Journal of Organic Chemistry, vol. 83, no. 13, pp. 6826–6828, Jul. 2018, doi: 10.1021/acs.joc. 8b01330.

[9]    J. Lei, L. Sun, S. Huang, C. Zhu, P. Li, J. He, V. Mackey, D. H. Coy, and Q. He, “The antimicrobial peptides and their potential clinical applications,” American Journal of Translational Research, vol. 11, no. 7, pp. 3919–3931, Jul. 2019.

[10]  S. Wang, L. Fan, H. Pan, Y. Li, Y. Qiu, and Y. Lu, “Antimicrobial peptides from marine animals: Sources, structures, mechanisms and the potential for drug development,” Frontiers in Marine Science, vol. 9, Jan. 2023, Art. no. 1112595, doi: 10.3389/fmars.2022.1112595.

[11]  P. Muangrod et al., “Bioactivity assessment of peptides derived from salted jellyfish (Rhopilema hispidum) byproducts,” PloS ONE, vol. 20, no. 2, Feb. 2025, Art. no. e0318781, doi: 10.1371/journal.pone.0318781.

[12]  P. Muangrod et al., “Effect of pepsin hydrolysis on antioxidant activity of jellyfish protein hydrolysate,” in E3S Web of Conferences, 2021, Art. no. 02010.

[13]  P. Muangrod et al., “Effect of pepsin on antioxidant and antibacterial activity of protein hydrolysate from salted jellyfish (Lobonema smithii and Rhopilema hispidum) by-products,” in E3S Web of Conferences, 2022, Art. no. 02013.

[14]  D. Zhu, Z. Yuan, D. Wu, C. Wu, H. R. El-Seedi, and M. Du, “The dual-function of bioactive peptides derived from oyster (Crassostrea gigas) proteins hydrolysates,” Food Science and Human Wellness, vol. 12, no. 5, pp. 1609–1617, Sep. 2023, doi: 10.1016/j.fshw.2023.02.006.

[15]  Z. Yu, Y. Yin, and W. Zhao, “Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase,” Food Chemistry, vol. 135, no. 3, pp. 2078–2085, Dec. 2012, doi: 10.1016/j.foodchem.2012.06.088.

[16]  G. J. Fadimu, A. Farahnaky, H. Gill, O. A. Olalere, C. Y. Gan, and T. Truong, “In-silico analysis and antidiabetic effect of α-amylase and α-glucosidase inhibitory peptides from lupin protein hydrolysate: enzyme-peptide interaction study using molecular docking approach,” Foods, vol. 11, no. 21, Oct. 2022, Art. no. 3375, doi: 10.3390/foods11213375.

[17]  E. M. Matheson, S. W. Bragg, and R. S. Blackwelder, “Diabetes-related foot infections: diagnosis and treatment,” American Family Physician, vol. 104, no. 4, pp. 386–394, Oct. 2021.

[18]  W. Charoenchokpanich, P. Muangrod, B. Thumthanarak, V. Rungsardthong, S. Roytrakul, S. Charoenlappanit, B. Wonganu, and F. Casanova, “Gelatin gel from by-products of sand jellyfish (Rhopilema hispidum): physicochemical and biochemical characterization,” Applied Science and Engineering Progress, vol. 18, no. 2, Oct. 2024, Art. no. 7615, doi: 10.14416/j.asep. 2024.10.003.

[19]  W. Charoenchokpanich, V. Rungsardthong, S. Vatanyoopaisarn, B. Thumthanaruk, and Y. Tamaki, “Salt reduction in salted jellyfish (Lobonema smithii) using a mechanical washing machine,” Science, Engineering and Health Studies, vol. 14, no. 3, pp. 184–192, Jun. 2020, doi: 10.14456/sehs.2020.17.

[20]  P. Muangrod, V. Rungsardthong, S. Vatanyoopaisarn, Y. Tamaki, E. Kuraya, and B. Thumthanaruk, “Effect of wash cycle on physical and chemical properties of rehydrated jellyfish by-products and jellyfish protein powder,” Science, Engineering and Health Studies, vol. 15, Mar. 2021, Art. no. 21030004, doi: 10.14456/sehs. 2021.14.

[21]  P. R. Hansen and A. Oddo, “Fmoc solid-phase peptide synthesis,” Methods in Molecular Biology, vol. 1348, pp. 33–50, 2015, doi: 10.100 7/978-1-4939-2999-3_5.

[22]  O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” Journal of Biological Chemistry, vol. 193, pp. 265–275, May. 1951.

[23]  T. Ditsawanon, S. Roytrakul, N. Phaonakrop, S. Charoenlappanit, S. Thaisakun, and N. Parinthawong, “Novel small antimicrobial peptides extracted from agricultural wastes act against Phytopathogens but not Rhizobacteria,” Agronomy, vol. 12, no. 8, Aug. 2022, Art. no. 1841, doi: 10.3390/agronomy12081841.

[24]  K. Teerapo, S. Roytrakul, A. Sistayanarain, and D. Kunthalert, “A scorpion venom peptide derivative BmKn‒22 with potent antibiofilm activity against Pseudomonas aeruginosa,” PLoS ONE, vol. 14, no. 6, Jun. 2019, Art. no. e0218479, doi: 10.1371/journal.pone.0218479.

[25]  S. Tyanova, T. Temu, and J. Cox, “The MaxQuant computational platform for mass spectrometry-based shotgun proteomics,” Nature Protocols, vol. 11, no. 12, pp. 2301–2319, Oct. 2016, doi: 10.1038/nprot.2016.136.

[26]  P. Bardou, J. Mariette, F. Escudié, C. Djemiel, and C. Klopp, “jvenn: an interactive Venn diagram viewer,” BMC Bioinformatics, vol. 15, Aug. 2014, Art. no. 293.

[27]  W. Charoenchokpanich, P. Muangrod, S. Roytrakul, V. Rungsardthong, B. Wonganu, S. Charoenlappanit, F. Casanova, and B. Thumthanaruk, “Exploring the model of cefazolin released from jellyfish gelatin-based hydrogels as affected by glutaraldehyde,” Gels, vol. 10, no. 4, Apr. 2024, Art. no. 271, doi: 10.3390/gels10040271.

[28]  M. Stark, L. P. Liu, and C. M. Deber, “Cationic hydrophobic peptides with antimicrobial activity,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 11, pp. 3585–3590, Nov. 2002, doi: 10.1128/aac.46.11.3585-3590.2002.

[29]  R. Tan, M. Wang, H. Xu, L. Qin, J. Wang, P. Cui, and S. Ru, “Improving the activity of antimicrobial peptides against aquatic pathogen bacteria by amino acid substitutions and changing the ratio of hydrophobic residues,” Frontiers in Microbiology, vol. 12, Oct. 2021, Art. no. 773076, doi: 10.3389/fmicb.2021.77307 6.

[30]  T. Yang, W. Zheng, X. Wang, Y. Li, M. Xiao, G. Wei, G. Tao, A. Huang, and Y. Shi, “A novel hydrophobic peptide FGMp11: Insights into antimicrobial properties, hydrophobic sites on Staphylococcus aureus and its application in infecting pasteurized milk,” Food Chemistry Advances, vol. 4, Jun. 2024, Art. no. 100697, doi: 10.1016/j.focha.2024.100697.

[31]  S. Meier, Z. M. Ridgway, A. L. Picciano, and G. A. Caputo, “Impacts of hydrophobic mismatch on antimicrobial peptide efficacy and bilayer permeabilization,” Antibiotics, vol. 12, no. 11, Nov. 2023, Art. no. 1624, doi: 10.3390/antibiotics 12111624.

[32]  M. Zasloff, “Antimicrobial peptides of multicellular organisms,” Nature, vol. 415, pp. 389–395, Jan. 2002.

[33]  M. R. Yeaman, and N. Y. Yount, “Mechanisms of antimicrobial peptide action and resistance,” Pharmacological Reviews, vol. 55, no. 1, pp. 27–55, Mar. 2003, doi: 10.1124/pr.55.1.2.

[34]  K. H. Park, Y. H. Nan, Y. Park, J. I. Kim, I. S. Park, K. S. Hahm, and S. Y. Shin, “Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1788, no. 5, pp. 1193–1203, May 2009, doi: 10.1016/j.bbamem.2009.02.020.

[35]  J. Gómez-Llobregat, F. Elías-Wolff, and M. Lindén, “Anisotropic membrane curvature sensing by amphipathic peptides,” Biophysical Journal, vol. 110, no. 1, pp. 197–204, Jan. 2016, doi: 10.1016/j.bpj.2015.11.3512.

[36]  M. Pirtskhalava, B. Vishnepolsky, M. Grigolava, and G. Managadze, “Physicochemical features and peculiarities of interaction of AMP with the membrane,” Pharmaceuticals, vol. 14, no. 5, May 2021, Art. no. 471, doi: 10.3390/ph14050471.

[37]  S. Ghosh et al., “Antidiabetic activity of Gnidia glauca and Dioscorea bulbifera: Potent amylase and glucosidase inhibitors,” Evidence‐Based Complementary and Alternative Medicine, vol. 2012, no. 1, Jul. 2011, Art. no. 929051, doi: 10.1155/2012/9290 51.

[38]  A. W. E. Chan, R. A. Laskowski, and D. L. Selwood, “Chemical fragments that hydrogen bond to Asp, Glu, Arg, and His side chains in protein binding sites,” Journal of Medicinal Chemistry, vol. 53, no. 8, pp. 3086–3094, Mar. 2010, doi: 10.1021/jm901696w.

[39]  H. Zhou, B. Safdar, H. Li, L. Yang, Z. Ying, and X. Liu, “Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate,” Food Chemistry, vol. 403, Mar. 2023, Art. no. 134434, doi: 10.1016/j.foodchem. 2022.134434.

[40]  K. Zhong, M. Jiang, W. Cao, J. Gao, H. Zheng, H. Lin, X. Qin, and Z. Chen, “Interaction between oyster peptides and anthocyanins: Stability improvement, structure changes and α-amylase and α-glucosidase inhibition effect,” LWT, vol. 221, Apr. 2025, Art. no. 117592, doi: 10.1016/j.lwt.2025.117592.

[41]  H. Lu, T. Xie, Q. Wu, Z. Hu, Y. Luo, and F. Luo, “Alpha-glucosidase inhibitory peptides: sources, preparations, identifications, and action mechanisms,” Nutrients, vol. 15, no. 19, Oct. 2023, Art. no. 4267, doi: 10.3390/nu15194267.

[42]  S. Kittiwisut, S. Amnuoypol, P. Pathompak, and S. Setharaksa, “α-Glucosidase and α-amylase inhibitory effects with anti-oxidative activity of Tetracera loureiri (Finet & Gagnep.) Pierre ex Craib leaf extracts,” Pharmaceutical Sciences Asia, vol. 48, no. 2, pp. 175–184, 2021, doi: 10.29090/psa.2021.02.19.125.

[43]  A. M. Rodhi, P. G. Yap, O. A. Olalere, and C. Y. Gan, “Exploring α-glucosidase inhibitory peptides: structure-activity relationship analysis and perspectives for designing potential anti-diabetic agents,” Jundishapur Journal of Natural Pharmaceutical Products, vol. 18, no. 4, Nov. 2023, Art. no. e139988, doi: 10.5812/jjnpp-139988.

[44]  M. A. Ibrahim, M. J. Bester, A. W. Neitz, and A. R. Gaspar, “Structural properties of bioactive peptides with α‐glucosidase inhibitory activity,” Chemical Biology & Drug Design, vol. 91, no. 2, pp. 370–379, Sep. 2017, doi: 10.1111/cbdd.13105.

[45]  A. J. Metrano, N. C. Abascal, B. Q. Mercado, E. K. Paulson, A. E. Hurtley, and S. J. Miller, “Diversity of secondary structure in catalytic peptides with β-turn-biased sequences,” Journal of the American Chemical Society, vol. 139, no. 1, pp. 492–516, Dec. 2016, doi: 10.1021/jacs.6b 11348.

[46]  J. E. Kohn, I. S. Millett, J. Jacob, B. Zagrovic, T. M. Dillon, N. Cingel, R. S. Dothager, S. Seifert, P. Thiyagarajan, T. R. Sosnick, M. Z. Hasan, V. S. Pande, I. Ruczinski, S. Doniach, and K. W. Plaxco, “Random-coil behavior and the dimensions of chemically unfolded proteins,” Proceedings of the National Academy of Sciences, vol. 101, no. 34, pp. 12491–12496, Aug. 2004, doi: 10.1073/pnas.040364310.

[47]  I. Greco, N. Molchanova, E. Holmedal, H. Jenssen, B. D. Hummel, J. L. Watts, J. Håkansson, P. R. Hansen, and J. Svenson, “Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides,” Scientific Reports, vol. 10, no. 1, Aug. 2020, Art. no. 13206, doi: 10.1038/s41598-020-69995-9.

[48]  L. Otvos Jr, “Antibacterial peptides and proteins with multiple cellular targets,” Journal of Peptide Science, vol. 11, no. 11, pp. 697–706, Aug. 2005, doi: 10.1002/psc.698.

[49]  Q. Y. Zhang, Z. B. Yan, Y. M. Meng, X. Y. Hong, G. Shao, J. J. Ma, X. R. Cheng, J. Liu, J. Kang, and C. Y. Fu, “Antimicrobial peptides: Mechanism of action, activity and clinical potential,” Military Medical Research, vol. 8, Sep. 2021, Art. no. 48, doi: 10.1186/s40779-021-00343-2.

Full Text: PDF

DOI: 10.14416/j.asep.2025.09.001

Refbacks

  • There are currently no refbacks.