Citric Acid Production by Aspergillus niger in Stirred Tank Bioreactor
Abstract
Keywords
[1] G. Perrone, G. Stea, F. Epifani, J. Varga, J. C. Frisvad, and R. A. Samson, “Aspergillus niger contains the cryptic phylogenetic species A. awamori,” Fungal Biology, vol. 115, no. 11, pp. 1138–1150, Jul. 2011, doi: 10.1016/j.funbio. 2011.07.008.
[2] T. C. Cairns, C. Nai, and V. Meyer, “How a fungus shapes biotechnology: 100 years of Aspergillus niger research,” Fungal Biology and Biotechnology, vol. 5, no. 1, May 2018, doi: 10.1186/s40694-018-0054-5.
[3] A. Latif, N. Hassan, H. Ali, M. B. K. Niazi, Z. Jahan, I. L. Ghuman, F. Hassan, and A. Saqib, “An overview of key industrial product citric acid production by Aspergillus niger and its application,” Journal of Industrial Microbiology & Biotechnology, Mar. 2025, doi: 10.1093/jimb/ kuaf007.
[4] E. Książek, “Citric acid: Properties, microbial production, and applications in industries,” Molecules, vol. 29, no. 1, p. 22, Dec. 2023, doi: 10.3390/molecules29010022.
[5] Lineback, I. J. Russell, and C. Rasmussen, “Two forms of the glucoamylase of Aspergillus niger,” Archives of Biochemistry and Biophysics, vol. 134, no. 2, pp. 539–553, Nov. 1969, doi: 10.1016/ 0003-9861(69)90316-6.
[6] J. H. Pazur, H. R. Knull, and A. Cepure, “Glycoenzymes: Structure and properties of the two forms of glucoamylase from Aspergillus niger,” Carbohydrate Research, vol. 20, no. 1, pp. 83–96, Nov. 1971, doi: 10.1016/s0008-6215 (00)84951-4.
[7] A. Clarke and B. Stone, “Properties of a β-(1→4)-glucan hydrolase from Aspergillus niger,” Biochemical Journal, vol. 96, no. 3, pp. 802–807, Sep. 1965, doi: 10.1042/bj0960802.
[8] R. B. Cain, “The identity of shikimate dehydrogenase and quinate dehydrogenase in Aspergillus niger,” Biochemical Journal, vol. 127, no. 2, p. 15P, Apr. 1972, doi: 10.1042/ bj1270015pa.
[9] H. Tsuge, O. Natsuaki, and K. Ohashi, “Purification, properties, and molecular features of glucose oxidase from Aspergillus niger,” The Journal of Biochemistry, vol. 78, no. 4, pp. 835–843, Oct. 1975, doi: 10.1093/oxfordjournals. jbchem.a130974.
[10] T. Toraya, M. Fujimura, S.-I. Ikeda, S. Fukui, H. Yamada, and H. Kumagai, “Affinity chromatography of amine oxidase from Aspergillus niger,” Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 420, no. 2, pp. 316–322, Feb. 1976, doi: 10.1016/0005- 2795(76)90323-8.
[11] P. Mill, “The pectic enzymes of Aspergillus niger. A mercury-activated exopolygalacturonase,” Biochemical Journal, vol. 99, no. 3, pp. 557–561, Jun. 1966, doi: 10.1042/bj0990557.
[12] K. Zhang, B. Zhang, and S. Yang, “Production of citric, itaconic, fumaric, and malic acids in filamentous fungal fermentations,” Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, pp. 375–398, Jul. 2013, doi: 10.1002/97811186 42047.ch20.
[13] G. J. G. Ruijter, H. Panneman, and J. Visser, “Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger,” Biochimica Et Biophysica Acta (BBA) - General Subjects, vol. 1334, no. 2–3, pp. 317–326, Mar. 1997, doi: 10.1016/s0304-4165(96)00110-9.
[14] N. V. Torres, “Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: II. Sensitivity analysis,” Biotechnology and Bioengineering, vol. 44, no. 1, pp. 112–118, Jun. 1994, doi: 10.1002/bit.260440116.
[15] L. Karaffa and C. P. Kubicek, “Aspergillus niger citric acid accumulation: Do we understand this well working black box?,” Applied Microbiology and Biotechnology, vol. 61, no. 3, pp. 189–196, Jan. 2003, doi: 10.1007/s00253-002-1201-7.
[16] A. Netik, N. V. Torres, J.-M. Riol, and C. P. Kubicek, “Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions,” Biochimica Et Biophysica Acta (BBA) - Biomembranes, vol. 1326, no. 2, pp. 287–294, Jun. 1997, doi: 10.1016/s0005-2736(97)00032-1.
[17] M. Papagianni, M. Mattey, M. Berovic and B. Kristiansen, “Aspergillus niger morphology and citric acid production in submerged batch fermentation effects of culture pH, phosphate and manganese levels,” Food Technology and Biotechnology, vol. 37, pp. 165–171, 1999.
[18] M. Papagianni, M. Mattey, and B. Kristiansen, “The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and culture,” Enzyme and Microbial Technology, vol. 25, no. 8–9, pp. 710–717, Nov. 1999, doi: 10.1016/s0141-0229(99) 00102-7.
[19] B. Max, J. M. Salgado, N. Rodríguez, S. Cortés, A. Converti, and J. M. Domínguez, “Biotechnological production of citric acid,” Brazilian Journal of Microbiology, vol. 41, no. 4, pp. 862–875, Aug. 2010, doi: 10.1590/s1517-83822010000400005.
[20] M. Hossain, J. D. Brooks, and I. S. Maddox, “The effect of the sugar source on citric acid production by Aspergillus niger,” Applied Microbiology and Biotechnology, vol. 19, no. 6, pp. 393–397, Jun. 1984, doi: 10.1007/bf00454376.
[21] M. Papagianni, M. Mattey, and B. Kristiansen, “Hyphal vacuolation and fragmentation in batch and fed-batch culture of Aspergillus niger and its relation to citric acid production,” Process Biochemistry, vol. 35, no. 3–4, pp. 359–366, Nov. 1999, doi: 10.1016/s0032-9592(99)00079-5.
[22] X. Yin, H.-D. Shin, J. Li, G. Du, L. Liu, and J. Chen, “Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production,” Scientific Reports, vol. 7, no. 1, Jan. 2017, doi: 10.1038/ srep41040.
[23] B. G. Hall, “Building Phylogenetic Trees from Molecular Data with MEGA,” Molecular Biology and Evolution, vol. 30, no. 5, pp. 1229–1235, Mar. 2013, doi: 10.1093/molbev/mst012.
[24] G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, Mar. 1959, doi: 10.1021/ac60147a030.
[25] D. V. Guebel and N. V. T. Darias, “Optimization of the citric acid production by Aspergillus niger through a metabolic flux balance model,” Electronic Journal of Biotechnology, vol. 4, no. 1, pp. 7–8, Apr. 2001, doi: 10.4067/s0717-3458200 1000100001.
[26] T. Eom, J. Isanapong, P. Kumnorkaew, M. Sriariyanun, and P. Pornwongthong, “1-Ethyl-3-methylimidazolium acetate pretreatment for maximizing reducing sugar recovery from mixed cabbage residue,” Environmental Science and Pollution Research, vol. 31, no. 10, pp. 15491–15502, Feb. 2024, doi: 10.1007/s11356-024-32189-1.
[27] P. Naveen, S. Sivamani, A. Cuento, and S. Pachiyappan, “Chemical route for synthesis of citric acid from orange and grape juices,” Chemical Industry and Chemical Engineering Quarterly, vol. 28, no. 2, pp. 135–140, Jul. 2021, doi: 10.2298/ciceq200820025n.
[28] S. Wieczorek and H. Brauer, “Continuous production of citric acid with recirculation of the fermentation broth after product recovery,” Bioprocess Engineering, vol. 18, no. 1, p. 1, Jan. 1997, doi: 10.1007/s004490050403.
[29] J. C. Suijdam, N. W. F. Kossen, and P. G. Paul, “An inoculum technique for the production of fungal pellets,” European Journal of Applied Microbiology and Biotechnology, vol. 10, no. 3, pp. 211–221, Jan. 1980, doi: 10.1007/bf00508608.
[30] K. Chaudary, S. Ethiraj, K. Lakshminarayana, and P. Tauro, “Citric acid production from Indian cane molasses by Aspergillus niger under solid state fermentation condition,” Journal of Research—Haryana Agricultural University, vol. 1, pp. 48–52, 1978.
[31] Y. D. Hang and E. E. Woodams, “Solid state fermentation of apple pomace for citric acid production,” MIRCEN Journal of Applied Microbiology and Biotechnology, vol. 2, no. 2, pp. 283–287, Jan. 1986, doi: 10.1007/bf00933494.
[32] L. M. Pera and D. A. Callieri, “Influence of calcium on fungal growth, hyphal morphology and citric acid production in Aspergillus niger,” Folia Microbiologica, vol. 42, no. 6, pp. 551–556, Dec. 1997, doi: 10.1007/bf02815463.
[33] G. Kosa, V. Shapaval, A. Kohler, and B. Zimmermann, “FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses,” Microbial Cell Factories, vol. 16, no. 1, Nov. 2017, doi: 10.1186/s12934-017-0817-3.
[34] A. Das, S. Bhattacharyya, R. Uppaluri, and C. Das, “Optimality of poly-vinyl alcohol/ starch/glycerol/citric acid in wound dressing applicable composite films,” International Journal of Biological Macromolecules, vol. 155, pp. 260–272, Mar. 2020, doi: 10.1016/j.ijbiomac. 2020.03.185.
[35] Mirghani, M. E. S., & Kabbashi, N. A., “Production of citric acid from sugarcane molasses by Aspergillus niger using submerged fermentation: Citric acid from molasses using submerged fermentation,” Biological and Natural Resources Engineering Journal, vol. 2, no. 1, pp. 47–55, 2019.
[36] R. Yu, J. Liu, Y. Wang, H. Wang, and H. Zhang, “Aspergillus niger as a Secondary Metabolite Factory,” Frontiers in Chemistry, vol. 9, Jul. 2021, doi: 10.3389/fchem.2021.701022.
[37] X. Yin, J. Li, H.-D. Shin, G. Du, L. Liu, and J. Chen, “Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects,” Biotechnology Advances, vol. 33, no. 6, pp. 830–841, Apr. 2015, doi: 10.1016/j.biotechadv.2015.04.006.
DOI: 10.14416/j.asep.2025.08.002
Refbacks
- There are currently no refbacks.