Page Header

Is the Future of Energy Rotten? Novel Perspective on Tri-Phase Fermentation and the Food Waste Paradox

Rich Jhon Paul Latiza, Rugi Vicente Rubi, Jerry Olay, Allan Soriano

Abstract


Annually, a staggering 1.3 billion tons of edible food are wasted globally, representing not only a substantial economic loss but also a squandered opportunity for sustainable energy production. While anaerobic digestion offers a potential pathway for valorizing this waste, its limitations in feedstock conversion efficiency and substrate versatility necessitate the exploration of innovative alternatives. This comprehensive perspective review elucidates the transformative potential of tri-phase fermentation (TPF), a groundbreaking approach that represents a paradigm shift in waste valorization by synergistically integrating solid-state fermentation (SSF), submerged fermentation (LF), and gas fermentation (GF) to derive bioethanol from food waste. This study highlights the successful integration of these three phases within the TPF framework, demonstrating effective carbohydrate breakdown in SSF, significant ethanol production in LF, and valuable product generation from syngas in GF. By harnessing the metabolic capabilities of diverse microorganisms and leveraging emerging technologies, TPF offers a holistic solution, effectively converting both the primary food waste and its residual byproducts into valuable bioethanol. This review critically examines the fundamental principles, comparative advantages, and inherent challenges associated with each fermentation phase, while also elucidating their potential for synergistic integration within the TPF framework. Furthermore, the technological and economic hurdles inherent to TPF are addressed, emphasizing the need for further research in strain engineering, process optimization, and downstream processing to enhance its commercial viability. This review accentuates and provides a comprehensive perspective on the urgent need for further research and development to fully unlock the transformative potential of TPF and promote a circular bioeconomy by converting food waste into valuable bioethanol, addressing both waste and energy challenges.

Keywords



[1]    B. Yu, X. Liu, X. Bi, H. Sun, and J. Buysse, “Agricultural resource management strategies for greenhouse gas mitigation: The land-energy-food-waste nexus based on system dynamics model,” Environmental Impact Assessment Review, vol. 110, 2025, Art. no. 107647, doi: 10.1016/j.eiar.2024.107647.

[2]    I. Raheem, A. Tawai, S. Amornraksa, M. Sriariyanun, A. Joshi, M. Gupta, W. Pongprayoon, D. Bhattacharyya, and S. K. Maity, “A comprehensive review of approaches in carbon capture, and utilization to reduce greenhouse gases,” Applied Science and Engineering Progress, vol 18, no. 2, 2025, Art. no. 7629, doi: 10.14416/j.asep.2024.11.004.

[3]    S. Areeya, E. J. Panakkal, P. Kunmanee, A. Tawai, S. Amornraksa, M. Sriariyanun, A. Kaoloun, N. Hartini, Y.-S. Cheng, M. Kchaou, S. Dasari, and M. P. Gundupalli, “A review of sugarcane biorefinery: From waste to value-added products,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7402, doi: 10.14416/j.asep.2024.06.004.

[4]    J. Zhang, J. Gu, R. Shan, H. Yuan, and Y. Chen, “Advances in thermochemical valorization of biomass towards carbon neutrality,” Resources, Conservation and Recycling, vol. 212, 2025, Art. no. 107905, doi: 10.1016/j.resconrec.2024.107905.

[5]    J. Zhang, J. Gu, R. Shan, H. Yuan, and Y. Chen, “Advances in thermochemical valorization of biomass towards carbon neutrality,” Resources, Conservation and Recycling, vol. 212, 2025, Art. no. 107905, doi: 10.1016/j.resconrec.2024.107905.

[6]    F. Feng, C. H. Wu, F. Li, X. Wang, J. Zhu, R. Zhang, and S. C. Chen, “Research on the integration of microbial fuel cells with conventional wastewater treatment technology: Advantages of anaerobic fermentation,” Energy Conversion and Management: X, vol. 23, 2024, Art. no. 100680, doi: 10.1016/j.ecmx.2024.100680.

[7]    T. Janković, A. J. J. Straathof, and A. A. Kiss, “Enhanced isobutanol recovery from fermentation broth for sustainable biofuels production,” Energy Conversion and Management: X, vol. 21, 2024, Art. no. 100520, doi: 10.1016/j.ecmx.2023.100520.

[8]    J. Wang, Z. Huang, Q. Jiang, A. Gharsallaoui, M. Cai, K. Yang, and P. Sun, “Fungal solid-state fermentation of crops and their by-products to obtain protein resources: The next frontier of food industry,” Trends in Food Science & Technology, vol. 138, pp. 628–644, 2023, doi: 10.1016/j.tifs. 2023.06.020.

[9]    H. Zhou, J. Jiang, Q. Zhao, Q. Gao, and K. Wang, “Performance of high solids enzymatic hydrolysis and bioethanol fermentation of food waste under the regulation of saponin,” Bioresource Technology, vol. 387, 2023, Art. no. 129486, doi: 10.1016/j.biortech.2023.129486.

[10] D. Sousa, V. Mosat, M. D. C. López-Luján, J. M. Salgado, A. Dias, I. Belo, J. J. Pascual, and M. Cambra-López, “Potential of solid-state fermentation to enhance the nutritional value of oilseed cakes for poultry,” Animal Feed Science and Technology, vol. 316, 2024, Art. no. 116056, doi: 10.1016/j.anifeedsci.2024.116056.

[11] T. Janković, A. J. J. Straathof, and A. A. Kiss, “Advanced downstream processing of bioethanol from syngas fermentation,” Separation and Purification Technology, vol. 322, 2023, Art. No. 124320, doi: 10.1016/j.seppur.2023.124320.

[12] O. Awogbemi and D. V. V. Kallon, “Recent advances in the application of nanomaterials for improved biodiesel, biogas, biohydrogen, and bioethanol production,” Fuel, vol. 358, 2024, Art. no. 130261, doi: 10.1016/j.fuel.2023.130261.

[13] O. Dybiński, J. Milewski, A. Szczęśniak, A. Martsinchyk, and Ł. Szabłowski, “Experimental investigation of porous anode degradation of a molten carbonate fuel cell fed with direct fermentation product composed of bioethanol,” International Journal of Hydrogen Energy, vol. 52, 2024, Art. no. 889, doi: 10.1016/j.ijhydene. 2023.04.065.

[14] I. A. Ndubuisi, C. O. Amadi, T. N. Nwagu, Y. Murata, and J. C. Ogbonna, “Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol,” Biotechnology Advances, vol. 63, 2023, Art. no. 108100, doi: 10.1016/j.biotechadv. 2023.108100.

[15] C. Sabater, M. Villamiel, and A. Montilla, “Integral use of pectin-rich by-products in a biorefinery context: A holistic approach,” Food Hydrocolloids, vol. 128, 2022, Art. no. 107564, doi: 10.1016/j.foodhyd.2022.107564.

[16] G. D. Gebreeyessus, “Towards the sustainable and circular bioeconomy: Insights on spent coffee grounds valorization,” Science of The Total Environment, vol. 833, 2022, Art. no. 155113, doi: 10.1016/j.scitotenv.2022.155113.

[17] H. K. S. Panahi, M. Dehhaghi, G. J. Guillemin, V. K. Gupta, S. S. Lam, M. Aghbashlo, and M. Tabatabaei, “Bioethanol production from food wastes rich in carbohydrates,” Current Opinion in Food Science, vol. 43, 2022, Art. no. 71, doi: 10.1016/j.cofs.2021.11.001.

[18] S. H. Kee, J. B. V. Chiongson, J. P. Saludes, S. Vigneswari, S. Ramakrishna, and K. Bhubalan, “Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories – A viable domain of circular economy,” Environmental Pollution, vol. 271, 2021, Art. no. 116311, doi: 10.1016/j.envpol.2020.116311.

[19] S. H. Kee, J. B. V. Chiongson, J. P. Saludes, S. Vigneswari, S. Ramakrishna, and K. Bhubalan, “Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories – A viable domain of circular economy,” Environmental Pollution, vol. 271, 2021, Art. no. 116311, doi: 10.1016/j.envpol.2020.116311.

[20] C. R. Chilakamarry, A. M. M. Sakinah, A. W. Zularisam, A. Pandey, and D.-V. N. Vo, “Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review,” Environmental Technology & Innovation, vol. 24, 2021, Art. no. 101902, doi: 10.1016/ j.eti.2021.101902.

[21] M. A. I. Malik, S. Zeeshan, M. Khubaib, A. Ikram, F. Hussain, H. Yassin, and A. Qazi, “A review of major trends, opportunities, and technical challenges in biodiesel production from waste sources,” Energy Conversion and Management: X, vol. 23, 2024, Art. no. 100675, doi: 10.1016/j.ecmx.2024.100675.

[22] R. J. P. Latiza, J. Olay, C. Eguico, R. J. Yan, and R. V. Rubi, “Environmental applications of carbon dots: Addressing microplastics, air and water pollution,” Journal of Hazardous Materials Advances, vol. 17, 2025, Art. no. 100591, doi: 10.1016/j.hazadv.2025.100591.

[23] N. K. Ramamoorthy, R. B. Pallam, S. Rakshit, P. Y. Tamilselvan, S. Renganathan, and V. V. Sarma, “Efficient valorization of biomass: A perspective on overcoming critical skepticisms surrounding the commissioning of functional 2G bio-refineries,” in Clean Energy Transition-via-Biomass Resource Utilization, S. Kumar, S. Sundaramurthy, D. Kumar, and A. K. Chandel, Eds., Singapore: Springer Nature Singapore, pp. 117–150, 2024, doi: 10.1007/978-981-97-6321-4_6.

[24] D. Haldar, A. M. Shabbirahmed, R. R. Singhania, C. W. Chen, C. D. Dong, V. K. Ponnusamy, A. N. Patel, “Understanding the management of household food waste and its engineering for sustainable valorization- A state-of-the-art review,” Bioresource Technology, vol. 358, 2022, Art. no. 127390, 2022, doi: 10.1016/j.biortech. 2022.127390.

[25] P. Sharma, A. Bano, S. P. Singh, J. D. Atkinson, S. S. Lam, H. M. N. Iqbal, and Y. W. Tong, “Biotransformation of food waste into biogas and hydrogen fuel – A review,” International Journal of Hydrogen Energy, vol. 52, 2024, Art. no. 46, doi: 10.1016/j.ijhydene.2022.08.081.

[26] I. Ntaikou, M. Alexandropoulou, M. Kamilari, S. A. Alamri, Y. S. Moustafa, M. Hashem, G. Antonopoulou, and G. Lyberatos, “Saccharification of starchy food waste through thermochemical and enzymatic pretreatment, towards enhanced bioethanol production via newly isolated non-conventional yeast strains,” Energy, vol. 281, 2023, Art. no. 128259, doi: 10.1016/j.energy.2023.128259.

[27] FAO, “Global food losses and FW–Extent, causes and prevention,” FAO, Gothenburg, Sweden, 2011.

[28] S. Varjani, S. Vyas, J. Su, M.A. Siddiqui, Z. H. Qin, Y. Miao, Z. Liu, S. Ethiraj, J. H. Mou, and C. S. K. Lin, “Nexus of food waste and climate change framework: Unravelling the links between impacts, projections, and emissions,” Environmental Pollution, vol. 344, 2024, Art. no. 123387, doi: 10.1016/j.envpol.2024.123387.

[29] C. Y. Krah, M. Bahramian, P. Hynds, and A. Priyadarshini, “Household food waste generation in high-income countries: A scoping review and pooled analysis between 2010 and 2022,” Journal of Cleaner Production, vol. 471, 2024, Art. no. 143375, doi: 10.1016/j.jclepro.2024.143375.

[30] S. Jiang, H. Chen, M. Vittuari, J. Wu, and Y. Wang, “Mapping quantity, composition, and embedded environmental impacts of post-consumer waste in the food service industry in China,” Waste Management, vol. 187, 2024, Art. no. 167, doi: 10.1016/j.wasman.2024.07.006.

[31] I. S. Soares, F. Perrechil, A. Grandis, D. Pagliuso, E. Purgatto, L. A. De Oliveira, and A. A. Cavalari, “Cassava waste (stem and leaf) analysis for reuse,” Food Chemistry Advances, vol. 4, 2024, Art. no. 100675, doi: 10.1016/j.focha.2024.100675.

[32] K. Akakpo, J. K. Fontodji, Y. Lare, R. Adam, A. D. Kokutse, and K. Kokou, “Overview of bioenergy use and production in sub-Saharan Africa,” Renewable and Sustainable Energy Reviews, vol. 204, 2024, Art. no. 114800, doi: 10.1016/j.rser.2024.114800.

[33] S. Manzoor, U. Fayaz, A. H. Dar, K. K. Dash, R. Shams, I. Bashir, V. K. Pandey, and G. Abdi, “Sustainable development goals through reducing food loss and food waste: A comprehensive review,” Future Foods, vol. 9, 2024, Art. no. 100362, doi: 10.1016/j.fufo.2024.100362.

[34] G. D’Alisa and F. Demaria, “Accumulation by contamination: Worldwide cost-shifting strategies of capital in waste management,” World Development, vol. 184, 2024, Art. no. 106725, doi: 10.1016/j.worlddev.2024.106725.

[35] O. Eičaitė and T. Baležentis, “Disentangling the sources and scale of food waste in households: A diary-based analysis in Lithuania,” Sustainable Production and Consumption, vol. 46, 2024, Art. no. 195, doi: 10.1016/j.spc.2024.02.018.

[36] N. V. Salim, B. Madhan, V. Glattauer, and J. A. M. Ramshaw, “Comprehensive review on collagen extraction from food by-products and waste as a value-added material,” International Journal of Biological Macromolecules, vol. 278, 2024, Art. no. 134374, doi: 10.1016/j.ijbiomac. 2024.134374.

[37] D. F. Goulart, M. O. Batalha, and M. J. Carrer, “The predictors driving farmers’ decision on drying and storage technology adoption,” Journal of Stored Products Research, vol. 105, 2024, Art. no. 102216, doi: 10.1016/j.jspr.2023.102216.

[38] D. Cudjoe, E. Nketiah, and B. Zhu, “Evaluation of potential power production and reduction in GHG emissions from bio-compressed natural gas derived from food waste in Africa,” Sustainable Production and Consumption, vol. 42, 2023, Art. no. 2, doi: 10.1016/j.spc.2023.09.004.

[39] R. Kour, S. Singh, H. B. Sharma, T. S. S. K. Naik, N. Shehata, P. N, W. Ali, D. Kapoor, D. S. Dhanjal, J. Singh, A. H. Khan, N. A. Khan, M. Yousefi, and P. C. Ramamurthy, “Persistence and remote sensing of agri-food wastes in the environment: Current state and perspectives,” Chemosphere, vol. 317, 2023, Art. no. 137822, doi: 10.10

[40] A. Arias, G. Feijoo, M. T. Moreira, A. Tukker, and S. Cucurachi, “Advancing waste valorization and end-of-life strategies in the bioeconomy through multi-criteria approaches and the safe and sustainable by design framework,” Renewable and Sustainable Energy Reviews, vol. 207, 2025, Art. no. 114907, doi: 10.1016/j.rser.2024.114907.

[41] Z. Chen, X. Pan, L. Hu, H. Ji, X. Yu, and J. F. Shao, “A comparative evaluation of chemical composition and nutritional value of bamboo rice and major cereals reveals the potential utility of bamboo rice as functional food,” Food Chemistry: X, vol. 18, 2023, Art. no. 100723, doi: 10.1016/j.fochx.2023.100723.

[42] A. Annapurna Reddy, Y. Vimala, G. Goudar, N. Mergu, and J. S. Rao, “Nutritional compilation of commonly consumed organic and conventional fruits and vegetables from India,” Food and Humanity, vol. 1, 2023, Art. no. 1652, doi: 10.1016/j.foohum.2023.11.006.

[43] M. Hadidi, F. Aghababaei, and D. J. McClements, “Sunflower meal/cake as a sustainable protein source for global food demand: Towards a zero-hunger world,” Food Hydrocolloids, vol. 147, 2024, Art. no. 109329, doi: 10.1016/j.foodhyd. 2023.109329.

[44] N. W. Mbuma, M. Labuschagne, J. Siwale, and A. Hugo, “Diversity in seed protein content, selected minerals, oil content and fatty acid composition of the Southern African Bambara groundnut germplasm collection,” Journal of Food Composition and Analysis, vol. 109, 2022, Art. no. 104477, doi: 10.1016/j.jfca.2022.104477.

[45] C. García-Contreras, F. Sánchez-Esquiliche, M. Lachica, I. Fernández-Fígares, F. Gómez-Carballar, G. Matos, L. Lara, R. Nieto, “Estimation of in vivo body composition of Iberian pigs using bioelectric impedance and ultrasonography techniques,” Meat Science, vol. 213, 2024, Art. no. 109484, doi: 10.1016/ j.meatsci.2024.109484.

[46] L. G. Francis, M. F. Aming, S. I. M. Idris, N. Mazlan, R. Othman, C. F. Fui, R. Shapawi, M. D. Shah, “Comparison of nutritional compositions and heavy metals analysis between wild and farmed Tilapia (Oreochromis sp.) and Asian Seabass (Lates sp.) in Sabah, Malaysia,” Journal of Food Composition and Analysis, vol. 133, 2024, Art. no. 106467, doi: 10.1016/j.jfca.2024. 106467.

[47] K. Bodor, B. Tamási, Á. Keresztesi, Z. Bodor, K. C. Orbán, and R. Szép, “A comparative analysis of the nutritional composition of several dairy products in the Romanian market,” Heliyon, vol. 10, 2024, Art. no. e31513, doi: 10.1016/j.heliyon. 2024.e31513.

[48] W. A. Rasaq, V. Thiruchenthooran, K. Wirkijowska, M. Valentin, Ł. Bobak, C. Adaobi Igwegbe, and A. Białowiec, “Hydrothermal carbonization of combined food waste: A critical evaluation of emergent products,” Waste Management, vol. 189, 2024, Art. no. 44, doi: 10.1016/j.wasman.2024.08.012.

[49] X. Sun, L. Yu, M. Xiao, C. Zhang, J. Zhao, A. Narbad, W. Chen, Q. Zhai, and F. Tian, “Exploring Core fermentation microorganisms, flavor compounds, and metabolic pathways in fermented Rice and wheat foods,” Food Chemistry, vol. 463, 2025, Art. no. 141019, doi: 10.1016/j.foodchem.2024.141019.

[50] J. Liang, C. Liu, H. Lu, G. Yang, G. Zhang, and A. Wang, “Enhanced anaerobic fermentation of potato waste for volatile fatty acid production by dilute sulfuric acid pretreatment: Performance, microbial community, and gene expression,” Journal of Water Process Engineering, vol. 59, 2024, Art. no. 105054, doi: 10.1016/j.jwpe.2024. 105054.

[51] E. Pagliarini, C. Minichiello, L. Sisti, G. Totaro, L. Baffoni, D. D. Gioia, and A. Saccani, “From food waste to eco-friendly functionalized polymer composites: Investigation of orange peels as active filler,” New Biotechnology, vol. 80, 2024, Art. no. 37, doi: 10.1016/j.nbt.2024. 01.001.

[52] S. Ramírez-Rodríguez, A. Sarroca, S. Pelosso, D. Fernández-Guerrero, and L. R. Puig, “Food waste in high income countries: Spanish fish value chain as a case study,” Fisheries Research, vol. 279, 2024, Art. no. 107134, doi: 10.1016/j.fishres. 2024.107134.

[53] T. Sathish, S. Karthikeyan, R. Sathyamurthy, A. Kumar, K. Rajaram, S. S. Kumar, A. A. Al-Kahtani, B. Pandit, M. Gupta, N. Senthilkumar, N. Malik, and M. Ubaidullah, “Waste coconut oil meal to hydrogen production through combined steam/water gasification with varying operating parameters and NaCl additions,” International Journal of Hydrogen Energy, In press, 2024, Art. no. S0360319924003598, doi: 10.1016/ j.ijhydene.2024.01.323.

[54] Sathish, I. Kumar, M. Kulkarni, R. Sathyamurthy, R. S. Ganesh, P. N. K. Reddy, A. M. Al-Enizi, B. Pandit, M. Gupta, M. Shahazad, and M. Yusuf, “Sustainable hydrogen production from waste of expired breads through supercritical water gasification,” International Journal of Hydrogen Energy, In press, 2024, Art. no. S036031992400212X, doi: 10.1016/j.ijhydene. 2024.01.190.

[55] A. Raizada, A. Shukla, S. Yadav, P. Katiyar, and R. Kumar, “Enhancement of H2 production via catalytic steam gasification of food waste as feedstock and its ash as a support and promoter for Ni catalyst,” International Journal of Hydrogen Energy, vol. 60, 2024, Art. no. 272, doi: 10.1016/j.ijhydene.2024.02.172.

[56] A. Carvajal, C. Sepúlveda, D. Navia, I. Poblete-Castro, F. Pinto-Ibieta, and A. Serrano, “Bulking agent in dry anaerobic digestion as a key factor for the enhancement of biogas production,” New Biotechnology, vol. 82, 2024, Art. no. 65, 2024, doi: 10.1016/j.nbt.2024.05.002.

[57] C. Park, N. Lee, J. Kim, and J. Lee, “Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions,” Environmental Pollution, vol. 270, 2021, Art. no. 116045, doi: 10.1016/j.envpol.2020.116045.

[58] P. L. B. Borth, J. K. H. Perin, A. R. Torrecilhas, D. D. Lopes, S. C. Santos, E. K. Kuroda, F. Fernandes, “Pilot-scale anaerobic co-digestion of food and garden waste: Methane potential, performance and microbial analysis,” Biomass and Bioenergy, vol. 157, 2022, Art. no. 106331, doi: 10.1016/j.biombioe.2021.106331.

[59] R. Kazemi, S. Mirmohamadsadeghi, and H. Amiri, “Efficient bio-hydrogen production by dark co-fermentation of food-rich municipal solid waste and urban pruning wastes of pine, cypress, and berry,” Process Safety and Environmental Protection, vol. 187, 2024, Art. no. 398, doi: 10.1016/j.psep.2024.04.060.

[60] B. A. Parra-Orobio, L. M. Girón-Bol, D. F. Gómez-Muñoz, L. F. Marmolejo-Rebellón, and P. Torres-Lozada, “Thermal pre-treatment as a tool for energy recovery from food waste through anaerobic digestion. Effect on kinetic and physicochemical characteristics of the substrate,” Environmental Technology & Innovation, vol. 21, 2021, Art. no. 101262, doi: 10.1016/j.eti.2020. 101262.

[61] M. Zeng, Z. Ge, Y. Ma, Z. Zha, Y. Wu, Z. Hou, and H. Zhang, “Hydrothermal carbonization coupled with gasification for collaborative disposal of kitchen waste and yard waste,” Energy Conversion and Management, vol. 283, 2023, Art. no. 116864, doi: 10.1016/j.enconman.2023. 116864.

[62] M. Farghali, A. Shimahata, I. M. A. Mohamed, M. Iwasaki, J. Lu, I. Ihara, and K. Umetsu, “Integrating anaerobic digestion with hydrothermal pretreatment for bioenergy production: Waste valorization of plastic containing food waste and rice husk,” Biochemical Engineering Journal, vol. 186, 2022, Art. no. 108546, doi: 10.1016/j.bej.2022. 108546.

[63] S. Modak, P. Katiyar, S. Yadav, S. Jain, B. Gole, and D. Talukdar, “Generation and characterization of bio-oil obtained from the slow pyrolysis of cooked food waste at various temperatures,” Waste Management, vol. 158, 2023, Art. no. 23, doi: 10.1016/j.wasman.2023. 01.002.

[64] M. Han, H. Liu, D. Chen, Y. Feng, Y. Tang, Q. Zhang, Q. An, W. Hu, Z. Jin, K. Yan, “Comprehensive evaluation of product characteristics and energy consumption in hydrothermal carbonization of food waste anaerobic digestate: A perspective on phosphorus recovery and fuel properties,” Renewable Energy, 2024, Art. no. 121168, doi: 10.1016/j.renene. 2024.121168.

[65] S. Mavai, A. Bains, K. Sridhar, P. Chawla, and M. Sharma, “Emerging deep eutectic solvents for food waste valorization to achieve sustainable development goals: Bioactive extractions and food applications,” Food Chemistry, vol. 462, 2024, Art. no. 141000, doi: 10.1016/j.foodchem. 2024.141000.

[66] P. Wongsirichot, B. Barroso-Ingham, A. Hamilton, M. Parroquin Gonzalez, R. Romero Jimenez, R. Hoeven, and J. Winterburn, “Food wastes for bioproduct production and potential strategies for high feedstock variability,” Waste Management, vol. 184, 2024, Art. no. 1, doi: 10.1016/j.wasman.2024.05.027.

[67] S. Kavitha, Y. K. Ravi, G. Kumar, V. K. Tyagi, and J. Rajesh Banu, “Integrated microalgae cultivation and sustainable biofuel production from pretreated food waste,” Journal of Cleaner Production, vol. 466, 2024, Art. no. 142829, doi: 10.1016/j.jclepro.2024.142829.

[68] N. Teslić, M. Pojić, A. Stupar, A. Mandić, A. Mišan, and B. Pavlić, “PhInd database – Polyphenol content in Agri-food by-products and trends in extraction technologies: A critical review,” Food Chemistry, vol. 458, 2024, Art. no. 140474, doi: 10.1016/j.foodchem.2024.140474.

[69] P. Negi, R. Kalsi, J. K. Bhasin, P. Kashyap, A. Thakur, and G. Goksen, “Ultrasound-driven advancements in food waste protein extraction: Assessing yield, nutritional impacts, techno-functionality, and structural modifications,” Sustainable Chemistry and Pharmacy, vol. 42, 2024, Art. no. 101767, doi: 10.1016/j.scp.2024. 101767.

[70] Y. Ren, Y. Li, Z. He, Y. Qin, T. Sakamaki, and Y. Y. Li, “System stability associated with different lipid contents during mesophilic anaerobic digestion of lipid-rich food waste,” Journal of Cleaner Production, vol. 443, 2024, Art. no. 141171, doi: 10.1016/j.jclepro.2024.141171.

[71] F. Daskiran, H. Gulhan, E. Kara, H. Guven, H. Ozgun, and M. E. Ersahin, “Environmental impact of sewage sludge co-digestion with food waste and fat-oil-grease: Integrating plant-wide modeling with life cycle assessment approach,” Bioresource Technology, vol. 394, 2024, Art. no. 130198, doi: 10.1016/j.biortech.2023.130198.

[72] H. Zou, Q. Jiang, R. Zhu, Y. Chen, T. Sun, M. Li, J. Zhai, D. Shi, H. Ai, L. Gu, Q. He, “Enhanced hydrolysis of lignocellulose in corn cob by using food waste pretreatment to improve anaerobic digestion performance,” Journal of Environmental Management, vol. 254, 2020, Art. no. 109830, doi: 10.1016/j.jenvman.2019.109830.

[73] M. Pongsopon, T. Woraruthai, P. Anuwan, T. Amawatjana, C. Tirapanampai, P. Prombun, K. Kusonmano, N. Weeranoppanant, P. Chaiyen, and T. Wongnate, “Anaerobic co-digestion of yard waste, food waste, and pig slurry in a batch experiment: An investigation on methane potential, performance, and microbial community,” Bioresource Technology Reports, vol. 21, 2023, Art. no. 101364, doi: 10.1016/ j.biteb.2023.101364.

[74] A. Liu, K. Dai, F. Wang, Y. Yan, and D. Fu, “Performance of anaerobic dynamic membrane bioreactor treatment of wastewater from food waste pretreatment: Dissolved organic matter changes and overloading effects,” Environmental Technology & Innovation, vol. 35, 2024, Art. no. 103737, doi: 10.1016/j.eti.2024.103737.

[75] J. You, S. Tang, Y. Zong, H. Shan, J. Wang, and C. Fu, “Effects of adding different ratios of residual sludge and food waste co-anaerobic fermentation liquid to AAO wastewater treatment process,” Journal of Water Process Engineering, vol. 53, 2023, Art. no. 103735, doi: 10.1016/ j.jwpe.2023.103735.

[76] M. Gao, H. Zou, W. Tian, D. Shi, H. Chai, L. Gu, Q. He, and W. Z. Tang, “Co-digestive performance of food waste and hydrothermal pretreated corn cob,” Science of The Total Environment, vol. 768, 2021, Art. no. 144448, doi: 10.1016/j.scitotenv.2020.144448.

[77] T. H. Chen, M. Y. Shen, C. Y. Chen, Y. W. Chen, L. H. Wang, C. Y. Chu, M. C. Lee, and H. L. Sun, “Biogas production from food waste hydrolysate using a subcritical water pretreated process and pulp wastewater seed sludge,” Sustainable Energy Technologies and Assessments, vol. 59, 2023, Art. no. 103392, doi: 10.1016/j.seta.2023. 103392.

[78] S. Siddique, F. Grassauer, V. Arulnathan, R. Sadiq, and N. Pelletier, “A review of life cycle impacts of different pathways for converting food waste into livestock feed,” Sustainable Production and Consumption, vol. 46, 2024, Art. no. 310, doi: 10.1016/j.spc.2024.02.023.

[79] T. Ren, H. Zhang, and C. Hu, “Molecular biological mechanism of fillers with surface micro-electric field to enhance biodegradation of kitchen-oil wastewater,” Journal of Environmental Sciences, vol. 152, 2024, Art. no. 453, doi: 10.1016/j.jes.2024.05.051.

[80] A. Wang, X. Li, X. Luo, G. He, D. Huang, Q. Huang, X. X. Zhang, and W. Chen, “Dissolved organic matter characteristics linked to bacterial community succession and nitrogen removal performance in woodchip bioreactors,” Journal of Environmental Sciences, vol. 148, 2025, Art. no. 625, doi: 10.1016/j.jes.2024.01.039.

[81] A. Mielcarek, K. Kłobukowska, B. Kalisz, J. Rodziewicz, and W. Janczukowicz, “Separation and recovery of elements from drainage water arising in soilless tomato cultivation − Application of electrocoagulation,” Separation and Purification Technology, vol. 354, 2025, Art. no. 128805, doi: 10.1016/j.seppur.2024.128805.

[82] H. Wang, X. Fu, H. Huang, D. Shen, D. Fan, L. Zhu, X. Dai, and B. Dong, “Bioenergy recovery and carbon emissions benefits of short-term bio-thermophilic pretreatment on low organic sewage sludge anaerobic digestion: A pilot-scale study,” Journal of Environmental Sciences, vol. 148, 2024, Art. no. 321, doi: 10.1016/j.jes.2023.08.022.

[83] S. Ahmed, T. Li, X. Y. Zhou, P. Yi, and R. Chen, “Quantifying the environmental footprints of biofuels for sustainable passenger ship operations,” Renewable and Sustainable Energy Reviews, vol. 207, 2025, Art. no. 114919, doi: 10.1016/j.rser.2024.114919.

[84] J. C. Orellana-Palacios, S. R. Garcia, Y. Rabanal-Ruiz, D. J. McClements, A. Moreno, and M. Hadidi, “Corn silk as an underutilized sustainable source of plant proteins: Extraction, fractionation, structure, and techno-functional properties,” Food Hydrocolloids, vol. 158, 2025, Art. no. 110550, doi: 10.1016/j.foodhyd.2024.110550.

[85] Y. Sumathi, P. Kumar, R. R. Singhania, C. W. Chen, B. Gurunathan, C. D. Dong, and A. K. Patel, “Harnessing Fe3O4 nanoparticles for sustainable harvesting of astaxanthin-producing microalgae: Advancing industrial-scale biorefinery,” Separation and Purification Technology, vol. 353, 2025, Art. no. 128408, doi: 10.1016/j.seppur.2024.128408.

[86] X. Cao, S. Li, and C. Liu, “Effect of lysozyme combined with hydrothermal pretreatment on excess sludge and anaerobic digestion,” Journal of Environmental Sciences, vol. 147, 2025, Art. no. 36, doi: 10.1016/j.jes.2023.10.001.

[87] J. Xu, W. Zhao, S. Xu, Q. Cao, M. Zhang, Y. Qu, C. Geng, H. Jia, and X. Wang, “Convenient preparation of inexpensive sandwich-type poly(vinylidene fluoride)/molecular sieve/ethyl cellulose mixed matrix membranes and their effective pre-exploration for the selective separation of CO2 in large-scale industrial utilization,” Separation and Purification Technology, vol. 354, 2025, Art. no. 129154, doi: 10.1016/j.seppur.2024.129154.

[88] V. Pradeshwaran, V. Sundaramoorthy, and A. Saravanakumar, “A comprehensive review on biogas production from food waste: Exploring cutting-edge technologies and innovations,” Biomass and Bioenergy, vol. 188, 2024, Art. no. 107336, doi: 10.1016/j.biombioe.2024.107336.

[89] M. Fernandes Araújo, M. P. Cardeal Volpi, G. Mockaitis, M. A. Morais Junior, A. Carvalho Da Costa, and S. Cândida Rabelo, “Crude glycerol organosolv pretreatment: Chain integration for the production of 2G ethanol and biogas,” Fuel, vol. 379, 2025, Art. no. 132984, doi: 10.1016/j.fuel.2024.132984.

[90] H. Guo, B. Song, Z. Deng, L. Chen, H. Ren, Q. Xu, X. Xu, “Insights on optimizing landfill site selection inspired by co-fermentation of weathered coal and landfill leachate,” International Biodeterioration & Biodegradation, vol. 196, 2025, Art. no. 105922, doi: 10.1016/j.ibiod.2024.105922.

[91] M. Haq, M. S. Ali, J. S. Park, J. W. Kim, W. Zhang, and B. S. Chun, “Atlantic salmon (Salmo salar) waste as a unique source of biofunctional protein hydrolysates: Emerging productions, promising applications, and challenges mitigation,” Food Chemistry, vol. 462, 2025, Art. no. 141017, doi: 10.1016/j.foodchem.2024.141017.

[92] W. Volpato Maroldi, I. De Andrade Arruda Fernandes, B. Demczuk Junior, A. Cristina Pedro, G. Maria Maciel, and C. Windson Isidoro Haminiuk, “Waste from the food industry: Innovations in biorefineries for sustainable use of resources and generation of value,” Bioresource Technology, vol. 413, 2024, Art. no. 131447, doi: 10.1016/j.biortech.2024.131447.

[93] Y. Xue, J. M. Moreno, C. Li, and M. K. Harder, “Growing community-based composting programs in China: Implementation and policy lessons from eight cases,” Resources, Conservation and Recycling, vol. 212, 2025, Art. no. 107882, doi: 10.1016/j.resconrec.2024.107882.

[94] I. Bušelić, Ž. Trumbić, J. Hrabar, I. Lepen-Pleić, T. Šegvić-Bubić, E. Kaitetzidou, E. Tibaldi, I. Bočina, L. Grubišić, and E. Sarropoulou, “Unravelling the intricate language of fish guts: Impact of plant-based vs. plant-insect-poultry-based diets on intestinal pathways in European seabass,” Aquaculture, vol. 594, 2025, Art. no. 741385, doi: 10.1016/j.aquaculture.2024.741385.

[95] M. Ferrante, F. Kirsch, and C. Westphal, “Stable pollinator communities in different white clover populations suggest potential win-win scenarios for crop yield and biodiversity,” Agriculture, Ecosystems & Environment, vol. 378, 2025, Art. no. 109295, doi: 10.1016/j.agee.2024.109295.

[96] A. B. Alayande, W. Qi, R. Karthikeyan, S. C. Popat, D. A. Ladner, and G. Amy, “Use of reclaimed municipal wastewater in agriculture: Comparison of present practice versus an emerging paradigm of anaerobic membrane bioreactor treatment coupled with hydroponic controlled environment agriculture,” Water Research, vol. 265, 2024, Art. no. 122197, doi: 10.1016/j.watres.2024.122197.

[97] T. P. C. Ezeorba, E. S. Okeke, M. H. Mayel, C. O. Nwuche, and T. C. Ezike, “Recent advances in biotechnological valorization of agro-food wastes (AFW): Optimizing integrated approaches for sustainable biorefinery and circular bioeconomy,” Bioresource Technology Reports, vol. 26, 2024, Art. no. 101823, doi: 10.1016/j.biteb.2024.101823.

[98] X. Sun, Z. Dou, G. C. Shurson, and B. Hu, “Bioprocessing to upcycle agro-industrial and food wastes into high-nutritional value animal feed for sustainable food and agriculture systems,” Resources, Conservation and Recycling, vol. 201, 2024, Art. no. 107325., doi: 10.1016/j.resconrec.2023.107325.

[99] T. Ding, Z. Guo, Y. Qian, Y. Wang, F. Jiang, Z. Zhang, X. Peng, “Interaction between POM and pore structure during straw decomposition in two soils with contrasting texture,” Soil and Tillage Research, vol. 245, 2025, Art. no. 106288, doi: 10.1016/j.still.2024.106288.

[100]     U. S. Behera, J. S. Sangwai, and H. S. Byun, “A comprehensive review on the recent advances in applications of nanofluids for effective utilization of renewable energy,” Renewable and Sustainable Energy Reviews, vol. 207, 2025, Art. no. 114901, doi: 10.1016/j.rser.2024.114901.

[101]     M. G. López-Ortega, Y. Guadalajara, T. L. Junqueira, I. L. M. Sampaio, A. Bonomi, and A. Sánchez, “Sustainability analysis of bioethanol production in Mexico by a retrofitted sugarcane industry based on the Brazilian expertise,” Energy, vol. 232, 2021, Art. no. 121056, doi: 10.1016/j.energy.2021. 121056.

[102]     M. Wang, J. Qiao, Y. Sheng, J. Wei, H. Cui, X. Li, G. Yue, “Bioconversion of corn fiber to bioethanol: Status and perspectives,” Waste Management, vol. 157, 2023, Art. no. 256, doi: 10.1016/j.wasman.2022.12.026.

[103]     J. M. D. Medeiros Dantas, J. R. Gómez Cardozo, J. B. Beigbeder, and J. M. Lavoie, “Comparison of sterilization techniques on different feedstock for sugar preservation and bioethanol fermentation,” Industrial Crops and Products, vol. 198, 2023, Art. no. 116662, doi: 10.1016/j.indcrop.2023.116662.

[104]     J. Gong, W. Xu, C. Zhang, Q. Zhu, X. Qin, H. Zhang, and G. Liu, “Effects of esterification and enzymatic modification on the properties of wheat starch and dough,” Food Hydrocolloids, vol. 158, 2025, Art. no. 110509, doi: 10.1016/j.foodhyd.2024.110509.

[105]     H. Jiang, J. Liu, W. Liu, Z. Xiao, and S. Fan, “Bioethanol production from cassava fermentation in pervaporation membrane bioreactor fed with high concentration sugar,” Fuel, vol. 362, 2024, Art. no. 130744, doi: 10.1016/j.fuel.2023.130744.

[106]     J. Pérez-Barragán, O. García-Depraect, R. Maya-Yescas, R. Vallejo-Rodríguez, H. Palacios-Hinestroza, M. Coca, R. Castro-Muñoz, and E. León-Becerril, “Solid and liquid fractionation of sugarcane and Agave bagasse during ozonolysis and enzymatic hydrolysis: Impact on biohydrogen and biogas production,” Industrial Crops and Products, vol. 210, 2024, Art. no. 118175, doi: 10.1016/j.indcrop.2024.118175.

[107]     G. Hodaifa, L. M. Nieto, and M. Kowalska, “Corn stover conversion into bioethanol and xylitol through an integral bioprocess: Kinetic study and modelling,” Journal of the Taiwan Institute of Chemical Engineers, vol. 131, 2022, Art. no. 104202, doi: 10.1016/j.jtice. 2022.104202.

[108]     S. Buragohain, P. Mahanta, and K. Mohanty, “Biogas production from anaerobic mono- and co-digestion of lignocellulosic feedstock: Process optimization and its implementation at community level,” Environmental Technology & Innovation, vol. 24, 2021, Art. no. 101981, doi: 10.1016/j.eti.2021.101981.

[109]     X. Xie, K. Song, J. Wang, J. Hu, S. Wu, and Q. Chu, “Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation,” Renewable Energy, vol. 225, 2024, Art. no. 120289, doi: 10.1016/j.renene. 2024.120289.

[110]     Y. Gao, C. Song, M. Usman, Z. Zheng, X. Meng, X. Shen, Y. Cai, and X. Wang, “Pretreatment of wheat straw using ammonia rich-liquid fraction of digestate: Contribution of biological and non-biological components in methane yield,” Industrial Crops and Products, vol. 220, 2024, Art. no. 119262, doi: 10.1016/j.indcrop.2024.119262.

[111]     E. J. Rifna, M. Dwivedi, D. Seth, R. C. Pradhan, P. K. Sarangi, and B. K. Tiwari, “Transforming the potential of renewable food waste biomass towards food security and supply sustainability,” Sustainable Chemistry and Pharmacy, vol. 38, 2024, Art. no. 101515, doi: 10.1016/j.scp.2024.101515.

[112]     D. Xu, Y. Wang, H. Hu, D. Yellezuome, F. He, and J. Cai, “Energy consumption balance and environmental benefits from the pyrolysis of switchgrass cultivated on marginal lands with biochar application to soil in China,” Industrial Crops and Products, vol. 219, 2024, Art. no. 119148, doi: 10.1016/j.indcrop.2024.119148.

[113]     H. Lee, Y. Jung Sohn, S. Jeon, H. Yang, J. Son, Y. Jin Kim, and S. J. Park, “Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products,” Bioresource Technology, vol. 376, 2023, Art. no. 128879, doi: 10.1016/j.biortech.2023.128879.

[114]     A. M. Elgarahy, M. G. Eloffy, A. Alengebawy, D. M. El-Sherif, M. S. Gaballah, K.Z. Elwakeel, and M. El-Qelish, “Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review,” Environmental Research, vol. 225, 2023, Art. no. 115558, doi: 10.1016/j.envres.2023.115558.

[115]     T. A. Moonsamy, G. Rajauria, A. Priyadarshini, and M. A. K. Jansen, “Food waste: Analysis of the complex and variable composition of a promising feedstock for valorisation,” Food and Bioproducts Processing, vol. 148, 2024, Art. no. 31, doi: 10.1016/j.fbp.2024.08.012.

[116]     R. F. Gonçalves, T. I. Assis, G. B. Maciel, R. M. Borges, and S. T. A. Cassini, “Co-digestion of municipal wastewater and microalgae biomass in an upflow anaerobic sludge blanket reactor,” Algal Research, vol. 52, 2020, Art. no. 102117, doi: 10.1016/j.algal.2020.102117.

[117]     C. Rong, T. Wang, Z. Luo, Y. Hu, Z. Kong, Y. Qin, T. Hanaoka, M. Ito, M. Kobayashi, Y.-Y. Li, “Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater,” Bioresource Technology, vol. 354, 2022, Art. no. 127167, doi: 10.1016/ j.biortech.2022.127167.

[118]     C. Rong, T. Wang, Z. Luo, and Y. Y. Li, “Achieving low-carbon municipal wastewater treatment by anaerobic membrane bioreactor at seasonal temperatures: A pilot scale investigation on reducing sludge yield and greenhouse gas emissions,” Chemical Engineering Journal, vol. 463, 2023, Art. no. 142415, doi: 10.1016/j.cej.2023.142415.

[119]     A. Thongsai, C. Phuttaro, K. Saritpongteeraka, B. Charnnok, J. Bae, P. (Lek) Noophan, and S. Chaiprapat, “Efficacy of anaerobic membrane bioreactor under intermittent liquid circulation and its potential energy saving against a conventional activated sludge for industrial wastewater treatment,” Energy, vol. 244, 2022, Art. no. 122556, doi: 10.1016/j.energy.2021. 122556.

[120]     M. Turker and R. K. Dereli, “Long term performance of a pilot scale anaerobic membrane bioreactor treating beet molasses based industrial wastewater,” Journal of Environmental Management, vol. 278, 2021, Art. no. 111403, doi: 10.1016/j.jenvman.2020. 111403.

[121]     G. Shang, G. Xu, J. Ren, J. P. Yu, W. Cai, K. Cui, P. Jin, and K. Guo, “A cathodic electro-fermentation system for enhanced methane production from high-concentration potato starch industrial wastewater,” Journal of Water Process Engineering, vol. 59, 2024, Art. no. 105006, doi: 10.1016/j.jwpe.2024.105006.

[122]     K. B. Prajapati and R. Singh, “Enhancement of biogas production in bio-electrochemical digester from agricultural waste mixed with wastewater,” Renewable Energy, vol. 146, 2020, Art. no. 460, doi: 10.1016/j.renene.2019. 06.154.

[123]     M. Custodio, R. Peñaloza, C. Espinoza, W. Espinoza, and J. Mezarina, “Treatment of dairy industry wastewater using bacterial biomass isolated from eutrophic lake sediments for the production of agricultural water,” Bioresource Technology Reports, vol. 17, 2022, Art. no. 100891, doi: 10.1016/j.biteb.2021.100891.

[124]     T. Bunraksa, D. Kantachote, and S. Chaiprapat, “The potential use of purple nonsulfur bacteria to simultaneously treat chicken slaughterhouse wastewater and obtain valuable plant growth promoting effluent and their biomass for agricultural application,” Biocatalysis and Agricultural Biotechnology, vol. 28, 2020, Art. no. 101721, doi: 10.1016/j.bcab.2020.101721.

[125]     B. Kazmi, T. Sadiq, S. A. A. Taqvi, S. Nasir, M. M. Khan, S. R. Naqvi, and H. AlMohamadi, “Towards a sustainable future: Bio-hydrogen production from food waste for clean energy generation,” Process Safety and Environmental Protection, vol. 183, 2024, Art. no. 555, doi: 10.1016/j.psep.2024.01.045.

[126]     M. Cucina, “Integrating anaerobic digestion and composting to boost energy and material recovery from organic wastes in the Circular Economy framework in Europe: A review,” Bioresource Technology Reports, vol. 24, 2023, Art. no. 101642, doi: 10.1016/j.biteb. 2023.101642.

[127]     J. Nyitrai, X. F. Almansa, K. Zhu, S. Banerjee, T. R. Hawkins, M. Urgun-Demirtas, L. Raskin, and S. J. Skerlos, “Environmental life cycle assessment of treatment and management strategies for food waste and sewage sludge,” Water Research, vol. 240, 2023, Art. no. 120078, doi: 10.1016/j.watres.2023.120078.

[128]     R. J. P. Latiza, A. Mustafa, K. Delos Reyes, K. L. Nebres, and R. V. Rubi, “Adsorbents derived from plant sources for caffeine removal: Current research and future outlook,” in The 3rd International Electronic Conference on Processes, p. 15, 2024. doi: 10.3390/ engproc2024067015.

[129]     K. Ding, D. Liu, X. Chen, H. Zhang, S. Shi, X. Guo, L. Zhou, L. Han, and W. Xiao, “Scalable lignocellulosic biorefineries: Technoeconomic review for efficient fermentable sugars production,” Renewable and Sustainable Energy Reviews, vol. 202, 2024, Art. no. 114692, doi: 10.1016/j.rser.2024.114692.

[130]     H. Adamu, U. Bello, A. U. Yuguda, U. I. Tafida, A. M. Jalam, A. Sabo, and M. Qamar, “Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes,” Renewable and Sustainable Energy Reviews, vol. 186, 2023, Art. no. 113686, doi: 10.1016/j.rser. 2023.113686.

[131]     G. Singh, S. Sahu, S. Bharti, and S. K. Arya, “Significance of enzymes for the recycling of wasted non-food biomass to value added products: A sustainable stewardship towards the cleaner environment,” Process Safety and Environmental Protection, vol. 190, 2024, Art. no. 395, doi: 10.1016/j.psep.2024.07.063.

[132]     L. Zou, Z. Qi, H. Cheng, B. Yu, Y. Y. Li, and J. Liu, “Advanced anaerobic digestion of household food waste pretreated by in situ-produced mixed enzymes via solid-state fermentation: Feasibility and application perspectives,” Environmental Research, vol. 252, 2024, Art. no. 119137, doi: 10.1016/ j.envres.2024.119137.

[133]     R. J. P. Latiza and R. V. Rubi, “Circular economy integration in 1G+2G sugarcane bioethanol production: Application of carbon capture, utilization and storage, closed-loop systems, and waste valorization for sustainability,” Applied Science and Engineering Progress, vol. 18, no. 1, 2025, Art. no. 7448, doi: 10.14416/j.asep.2024. 07.005.

[134]     E. S. Rosas-Mendoza, A. Alvarado-Vallejo, N. A. Vallejo-Cantú, C. Velasco-Santos, and A. Alvarado-Lassman, “Valorization of the complex organic waste in municipal solid wastes through the combination of hydrothermal carbonization and anaerobic digestion,” Renewable Energy, vol. 231, 2024, Art. no. 120916, doi: 10.1016/j.renene.2024. 120916.

[135]     P. Torabi, N. Hamdami, N. Soltanizadeh, O. Farhadian, and A. Le-Bail, “Restaurant food waste valorization by microwave-assisted hydrolysis: Optimization, typological and biochemical analysis,” Cleaner Materials, vol. 13, 2024, Art. no. 100269, doi: 10.1016/ j.clema.2024.100269.

[136]     S. Rehman, Y. S. Yang, R. D. Patria, T. Zulfiqar, N. K. Khanzada, R. J. Khan, C. S. K. Lin, D. J. Lee, and S. Y. Leu, “Substrate-related factors and kinetic studies of carbohydrate-rich food wastes on enzymatic saccharification,” Bioresource Technology, vol. 390, 2023, Art. no. 129858, doi: 10.1016/j.biortech.2023.129858.

[137]     L. Mora and F. Toldrá, “Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides,” Current Opinion in Food Science, vol. 49, 2023, Art. no. 100973, doi: 10.1016/j.cofs.2022.100973.

[138]     K. A. Shukla, A. D. A. Bin Abu Sofian, A. Singh, W. H. Chen, P. L. Show, and Y. J. Chan, “Food waste management and sustainable waste to energy: Current efforts, anaerobic digestion, incinerator and hydrothermal carbonization with a focus in Malaysia,” Journal of Cleaner Production, vol. 448, 2024, Art. no. 141457, doi: 10.1016/j.jclepro.2024. 141457.

[139]     M. T. Aminzai, E. Yabalak, D. Kalderis, and A. M. Gizir, “Environmental remediation of emerging contaminants using subcritical water: A review,” Journal of Environmental Management, vol. 366, 2024, Art. no. 121800, doi: 10.1016/j.jenvman.2024.121800.

[140]     J. Bai, Y. Huang, X. Fan, J. Cui, B. Chen, Y. Chen, and L. Guo, “Production of high calorific value hydrogen-rich combustible gas by supercritical water gasification of straw assisted by machine learning,” Bioresource Technology, vol. 410, 2024, Art. no. 131275, doi: 10.1016/j.biortech.2024.131275.

[141]     L. Deng, C. Su, Y. Wu, Q. Xue, C. Zhang, Y. Wang, B. Wang, and D. Cai, “High-titer l-lactic acid production by fed-batch simultaneous saccharification and fermentation of steam-exploded corn stover,” Fermentation, vol. 11, no. 1, 2025, Art. no. 25, doi: 10.3390/fermentation11010025.

[142]     B. Samantaray, S. Mohapatra, B. Pradhan, B. C. Behera, R. R. Mishra, and H. Thatoi, “Utilization of cotton stalk waste for sustainable isopropanol production via hydrolysis and coculture fermentation,” International Biodeterioration & Biodegradation, vol. 195, 2024, Art. no. 105908, doi: 10.1016/j.ibiod.2024.105908.

[143]     Y. Le, M. Zhang, P. Wu, H. Wang, and J. Ni, “Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing,” Engineering Microbiology, vol. 4, no. 4, 2024, Art. no. 100174, doi: 10.1016/j.engmic.2024.100174.

[144]     Z. Li, P. R. Waghmare, L. Dijkhuizen, X. Meng, and W. Liu, “Research advances on the consolidated bioprocessing of lignocellulosic biomass,” Engineering Microbiology, vol. 4, no. 2, 2024, Art. no. 100139, doi: 10.1016/j.engmic.2024.100139.

[145]     J. Luo, C. Zhao, W. Huang, F. Wang, F. Fang, L. Su, D. Wang, and Y. Wu, “A holistic valorization of treasured waste activated sludge for directional high-valued products recovery: Routes, key technologies and challenges,” Environmental Research, vol. 262, 2024, Art. no. 119904, doi: 10.1016/j.envres.2024.119904.

[146]     N. Muñoz-Seijas, H. Fernandes, D. Outeiriño, M. G. Morán-Aguilar, J. M. Domínguez, and J. M. Salgado, “Potential use of frass from edible insect Tenebrio molitor for proteases production by solid-state fermentation,” Food and Bioproducts Processing, vol. 144, 2024, Art. no. 146, doi: 10.1016/j.fbp.2024.01.002.

[147]     S. Das, C. T, R. Selvasembian, and A. A. Prabhu, “Mixed food waste valorization using a thermostable glucoamylase enzyme produced by a newly isolated filamentous fungus: A sustainable biorefinery approach,” Chemosphere, vol. 352, 2024, Art. no. 141480, doi: 10.1016/j.chemosphere.2024.141480.

[148]     L. Perret, N. Boukis, and J. Sauer, “Synthesis gas fermentation at high cell density: How pH and hydrogen partial pressure affect productivity and product ratio in continuous fermentation,” Bioresource Technology, vol. 391, 2024, Art. no. 129894, doi: 10.1016/j.biortech.2023.129894.

[149]     M. S. Hossain, F. Wasima, M. S. I. K. Shawon, M. Mourshed, and B. K. Das, “Valorization of food waste into hydrogen energy through supercritical water gasification: Generation potential and techno-econo-environmental feasibility assessment,” Renewable Energy, vol. 235, 2024, Art. no. 121382, doi: 10.1016/j.renene.2024.121382.

[150]     D. H. E. Salamony, M. Salah Eldin Hassouna, Taha. I. Zaghloul, and H. Moustafa Abdallah, “Valorization of chicken feather waste using recombinant bacillus subtilis cells by solid-state fermentation for soluble proteins and serine alkaline protease production,” Bioresource Technology, vol. 393, 2024, Art. no. 130110, doi: 10.1016/j.biortech.2023.130110.

[151]     M. G. Adsul, “Cellulolytic enzymes recycling strategies for the economic conversion of lignocellulosic biomass to fuels,” Process Biochemistry, vol. 147, 2024, Art. no. 62, doi: 10.1016/j.procbio.2024.08.009.

[152]     N. Kukreti, P. Kumar, and R. Kataria, “Sustainable biotransformation of lignocellulosic biomass to microbial enzymes: An overview and update,” Industrial Crops and Products, vol. 222, 2024, Art. no. 119432, doi: 10.1016/j.indcrop.2024.119432.

[153]     H. Priadi, S. Awad, A. Villot, Y. Andres, and W. W. Purwanto, “Techno-enviro-economic analysis of second-generation bioethanol at plant-scale by different pre-treatments of biomass from palm oil waste,” Energy Conversion and Management: X, vol. 21, 2024, Art. no. 100522, doi: 10.1016/j.ecmx.2023. 100522.

[154]     S. P. Kulkarni, “Supercritical water hydrolysis of cellulose: State-of-the-art of green depolymerisation technique,” Biomass and Bioenergy, vol. 184, 2024, Art. no. 107182, doi: 10.1016/j.biombioe.2024.107182.

[155]     K. Gyan, A. E. K. Afedzi, P. Tanypramphan, and P. Parakulsuksatid, “A review of the advances in detoxification strategies of lignocellulosic hydrolysate for bio-based succinic acid production,” Biocatalysis and Agricultural Biotechnology, vol. 60, 2024, Art. no. 103323, doi: 10.1016/j.bcab.2024.103323.

[156]     P. Pokorski, R. He, and M. A. Kurek, “Advancing protein hydrolysis and phytosterol encapsulation: Emerging trends and innovations in protein-based microencapsulation techniques – A comprehensive review,” Food Research International, vol. 196, 2024, Art. no. 115012, doi: 10.1016/j.foodres.2024.115012.

[157]     H. Si, F. Xie, R. Yang, W. Gu, S. Wu, J. Zhang, Y. Zhang, and Y. Qiao, “Recent developments in enzymatic preparation, physicochemical properties, bioactivity, and application of resistant starch type III from staple food grains,” International Journal of Biological Macromolecules, vol. 279, 2024, Art. no. 135521, doi: 10.1016/j.ijbiomac.2024.135521.

[158]     L. Cui, J. Chen, Q. Fei, and Y. Ma, “The migration regularity and removal mechanism of antibiotic resistance genes during in situ enzymatic hydrolysis and anaerobic digestion of food waste,” Bioresource Technology, vol. 385, 2023, Art. no. 129388, doi: 10.1016/j.biortech.2023.129388.

[159]     H. Zhou, Q. Zhao, J. Jiang, Z. Wang, L. Li, Q. Gao, and K. Wang, “Enhancing of pretreatment on high solids enzymatic hydrolysis of food waste: Sugar yield, trimming of substrate structure,” Bioresource Technology, vol. 379, 2023, Art. no. 128989, doi: 10.1016/j.biortech. 2023.128989.

[160]     T. Suresh, N. Sivarajasekar, K. Balasubramani, T. Ahamad, M. Alam, and M. Naushad, “Process intensification and comparison of bioethanol production from food industry waste (potatoes) by ultrasonic assisted acid hydrolysis and enzymatic hydrolysis: Statistical modelling and optimization,” Biomass and Bioenergy, vol. 142, 2020, Art. no. 105752, doi: 10.1016/j.biombioe.2020. 105752.

[161]     C. Zhang, X. Kang, F. Wang, Y. Tian, T. Liu, Y. Su, T. Qian, and Y. Zhang, “Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform,” Energy, vol. 208, 2020, Art. no. 118379, doi: 10.1016/j.energy.2020.118379.

[162]     J. Chen, L. Cui, Y. Yan, X. Ji, Q. Fei, and Y. Ma, “In situ preparation of oriented microbial consortium-based compound enzyme strengthens food waste disintegration and anaerobic digestion: Performance, mechanism, microbial communities and global metabolic pathways,” Chemical Engineering Journal, vol. 486, 2024, Art. no. 150208, doi: 10.1016/ j.cej.2024.150208.

[163]     Z. Zhang, J. Xing, X. Li, X. Lu, G. Liu, Y. Qu, and J. Zhao, “Review of research progress on the production of cellulase from filamentous fungi,” International Journal of Biological Macromolecules, vol. 277, 2024, Art. no. 134539, doi: 10.1016/j.ijbiomac.2024.134539.

[164]     J. Chen, Y. Cai, Z. Wang, Z. Xu, W. Zhuang, D. Liu, Y. Lv, S. Wang, J. Xu, and H. Ying, “Solid-state fermentation of corn straw using synthetic microbiome to produce fermented feed: The feed quality and conversion mechanism,” Science of The Total Environment, vol. 920, 2024, Art. no. 171034, doi: 10.1016/j.scitotenv.2024.171034.

[165]     R. Shafiei-Alavijeh, M. Aghbashlo, M. Tabatabaei, J. F. M. Denayer, and K. Karimi, “A critical review of sustainable biorefineries utilizing high-solid processing for industrial crop lignocellulosic wastes valorization,” Industrial Crops and Products, vol. 211, p. 118236, 2024, doi: 10.1016/j.indcrop.2024. 118236.

[166]     L. Fan, S. Ma, L. Li, and J. Huang, “Fermentation biotechnology applied to wheat bran for the degradation of cell wall fiber and its potential health benefits: A review,” International Journal of Biological Macromolecules, vol. 275, 2024, Art. no. 133529, doi: 10.1016/j.ijbiomac.2024.133529.

[167]     N. Oiza, J. Moral-Vico, A. Sánchez, and T. Gea, “Enhanced anaerobic digestion of food waste using purified lactonic sophorolipids produced by solid-state fermentation of molasses and oil waste: A circular approach,” Journal of Cleaner Production, vol. 468, 2024, Art. no 143062, doi: 10.1016/j.jclepro.2024. 143062.

[168]     S. Xu, S. Zhu, C. Li, J. Bu, Y. W. Tiong, P. Sharma, W. Kong, C. Shao, H. Xie, and Y. W. Tong, “Succession of biochar in integrated pyrolysis, anaerobic digestion, and solid–state fermentation towards closed loop valorization of food waste,” Fuel, vol. 369, 2024, Art. no. 131719, doi: 10.1016/j.fuel.2024.131719.

[169]     R. Bhattacharya, S. Arora, and S. Ghosh, “Bioprocess optimization for food-grade cellulolytic enzyme production from sorghum waste in a novel solid-state fermentation bioreactor for enhanced apple juice clarification,” Journal of Environmental Management, vol. 358, 2024, Art. no. 120781, doi: 10.1016/j.jenvman.2024.120781.

[170]     Y. Y. Kuo and S. Y. Li, “Solid-state fermentation of food waste by Serratia marcescens NCHU05 for prodigiosin production,” Journal of the Taiwan Institute of Chemical Engineers, vol. 160, 2024, Art. no. 105260, doi: 10.1016/j.jtice.2023.105260.

[171]     C. R. Manuel, Q. F. Carlos, P. C. Carmen, V.-D. L. Marisela, and M. A. Iván, “Fungal solid-state fermentation of food waste for biohydrogen production by dark fermentation,” International Journal of Hydrogen Energy, vol. 47, no. 70, 2022, Art. no. 30062, doi: 10.1016/j.ijhydene.2022.06.313.

[172]     J. A. Tuly, H. M. Zabed, A. S. Nizami, M. M. Hassan, S. M. R. Azam, M. K. Awasthi, Q. Janet, G. Chen, N. D. K. Akpabli-Tsigbe, and H. Ma, “Bioconversion of agro-food industrial wastes into value-added peptides by a Bacillus sp. mutant through solid-state fermentation,” Bioresource Technology, vol. 346, 2022, Art. no. 126513, doi: 10.1016/j.biortech.2021.126513.

[173]     S. L. Paz-Arteaga, J. A. Ascacio-Valdés, C. N. Aguilar, E. Cadena-Chamorro, L. Serna-Cock, M.A. Aguilar-González, N. Ramírez-Guzmán, and C. Torres-León, “Bioprocessing of pineapple waste for sustainable production of bioactive compounds using solid-state fermentation,” Innovative Food Science & Emerging Technologies, vol. 85, 2023, Art. no. 103313, doi: 10.1016/j.ifset.2023.103313.

[174]     J. Li, F. Ye, Y. Zhou, L. Lei, J. Chen, S. Li, G. Zhao, “Tailoring the composition, antioxidant activity, and prebiotic potential of apple peel by Aspergillus oryzae fermentation,” Food Chemistry: X, vol. 21, 2024, Art. no. 101134, doi: 10.1016/j.fochx.2024.101134.

[175]     P. Leite, I. Belo, and J. M. Salgado, “Co-management of agro-industrial wastes by solid-state fermentation for the production of bioactive compounds,” Industrial Crops and Products, vol. 172, 2021, Art. no. 113990, doi: 10.1016/j.indcrop.2021.113990.

[176]     M. Carmona-Cabello, I. L. García, A. Papadaki, E. Tsouko, A. Koutinas, and M. P. Dorado, “Biodiesel production using microbial lipids derived from food waste discarded by catering services,” Bioresource Technology, vol. 323, 2021, Art. no. 124597, doi: 10.1016/ j.biortech.2020.124597.

[177]     P. R. B. Feitosa, T. R. J. Santos, N. C. Gualberto, N. Narain, and L. C. L. De Aquino Santana, “Solid-state fermentation with Aspergillus niger for the bio-enrichment of bioactive compounds in Moringa oleifera (moringa) leaves,” Biocatalysis and Agricultural Biotechnology, vol. 27, 2020, Art. no. 101709, doi: 10.1016/j.bcab.2020.101709.

[178]     M. S. Wagh, S. S, P. C. Nath, A. Chakraborty, R. Amrit, B. Mishra, A. K. Mishra, Y. K. Mohanta, “Valorisation of agro-industrial wastes: Circular bioeconomy and biorefinery process – A sustainable symphony,” Process Safety and Environmental Protection, vol. 183, 2024, Art. no. 708, doi: 10.1016/j.psep.2024. 01.055.

[179]     N. P. Dalbanjan, M. P. Eelager, K. Korgaonkar, B. N. Gonal, A. J. Kadapure, S. B. Arakera, S. K. P. Kumar, “Descriptive review on conversion of waste residues into valuable bionanocomposites for a circular bioeconomy,” Nano-Structures & Nano-Objects, vol. 39, 2024, Art. no. 101265, doi: 10.1016/j.nanoso.2024.101265.

[180]     O. Martínez-Avila, J. Llimós, and S. Ponsá, “Integrated solid-state enzymatic hydrolysis and solid-state fermentation for producing sustainable polyhydroxyalkanoates from low-cost agro-industrial residues,” Food and Bioproducts Processing, vol. 126, 2021, Art. no. 334, doi: 10.1016/j.fbp.2021.01.015.

[181]     E. Molina-Peñate, A. Sánchez, and A. Artola, “Enzymatic hydrolysis of the organic fraction of municipal solid waste: Optimization and valorization of the solid fraction for Bacillus thuringiensis biopesticide production through solid-state fermentation,” Waste Management, vol. 137, 2022, Art. no. 304, doi: 10.1016/j.wasman.2021.11.014.

[182]     E. Molina-Peñate, M. Del C. Vargas-García, A. Artola, and A. Sánchez, “Filling in the gaps in biowaste biorefineries: The use of the solid residue after enzymatic hydrolysis for the production of biopesticides through solid-state fermentation,” Waste Management, vol. 161, 2023, Art. no. 92, doi: 10.1016/j.wasman. 2023.02.029.

[183]     W. Dessie, X. Luo, M. Wang, Y. Liao, Z. Li, M. R. Khan, and Z. Qin, “Enhancing the valorization efficiency of Camellia oil extraction wastes through sequential green acid pretreatment and solid-state fermentation-based enzymatic hydrolysis,” Industrial Crops and Products, vol. 217, 2024, Art. no. 118893, doi: 10.1016/j.indcrop.2024.118893.

[184]     Y. Shen, “Biomass pretreatment for steam gasification toward H2-rich syngas production – An overview,” International Journal of Hydrogen Energy, vol. 66, 2024, Art. no. 90, doi: 10.1016/j.ijhydene.2024.04.096.

[185]     P. Kumar and L. Fiori, “Thermochemical and biological routes for biohydrogen production: A review,” Energy Conversion and Management: X, vol. 23, 2024, Art. no. 100659, doi: 10.1016/j.ecmx.2024.100659.

[186]     K. Heeley, R. L. Orozco, L. E. Macaskie, J. Love, and B. Al-Duri, “Supercritical water gasification of microalgal biomass for hydrogen production-A review,” International Journal of Hydrogen Energy, vol. 49, 2024, Art. no. 310, doi: 10.1016/j.ijhydene.2023. 08.081.

[187]     Y. Zhai, S. Tong, L. Chen, Y. Zhang, F. R. Amin, H. Khalid, F. Liu, Y. Duan, W. Chen, G. Chen, D. Li, “The enhancement of energy supply in syngas-fermenting microorganisms,” Environmental Research, vol. 252, 2024, Art. no. 118813, doi: 10.1016/j.envres.2024.118813.

[188]     X. Wang, W. Jin, Y. Li, S. Liu, J. Xu, J. Liu, H. Li, and T. Long, “Treatment advances of hazardous solid wastes from oil and gas drilling and production processes,” Chemical Engineering Journal, vol. 497, 2024, Art. no. 154182, doi: 10.1016/j.cej.2024.154182.

[189]     S. G. Nkuna, T. O. Olwal, S. D. Chowdhury, and J. M. Ndambuki, “A review of wastewater sludge-to-energy generation focused on thermochemical technologies: An improved technological, economical and socio-environmental aspect,” Cleaner Waste Systems, vol. 7, 2024, Art. no. 100130, doi: 10.1016/j.clwas.2024.100130.

[190]     J. Gao, M. Y. Ali, Y. Kamaraj, Z. Zhang, L. Weike, S. Sethupathy, and D. Zhu, “A comprehensive review on biological funnel mechanism in lignin valorization: Pathways and enzyme dynamics,” Microbiological Research, vol. 287, 2024, Art. no. 127835, doi: 10.1016/j.micres.2024.127835.

[191]     O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, D. Y. Dubov, and M. Y. Sokol, “Effect of sodium carbonate on supercritical water gasification and oxidation of sludge-lignin at continuous counter-feed of the reagents,” The Journal of Supercritical Fluids, vol. 164, 2020, Art. no. 104933, doi: 10.1016/ j.supflu.2020.104933.

[192]     L. Yu, R. Zhang, C. Cao, L. Liu, J. Fang, and H. Jin, “Hydrogen production from supercritical water gasification of lignin catalyzed by Ni supported on various zeolites,” Fuel, vol. 319, 2022, Art. no. 123744, doi: 10.1016/j.fuel.2022.123744.

[193]     C. Cao, C. Bian, G. Wang, B. Bai, Y. Xie, and H. Jin, “Co-gasification of plastic wastes and soda lignin in supercritical water,” Chemical Engineering Journal, vol. 388, 2020, Art. no. 124277, doi: 10.1016/j.cej.2020.124277.

[194]     C. Cao, L. Yu, Y. Xie, W. Wei, and H. Jin, “Hydrogen production by supercritical water gasification of lignin over CuO–ZnO catalyst synthesized with different methods,” International Journal of Hydrogen Energy, vol. 47, no. 14, 2022, Art. no. 8716, doi: 10.1016/j.ijhydene.2021.12.230.

[195]     Y. Guo, C. Wang, J. Chen, E. Leng, and J. E, “Study on detailed reaction pathways of sulfur-containing alkali lignin during supercritical water gasification for hydrogen production,” Renewable Energy, vol. 233, 2024, Art. no. 121195, doi: 10.1016/j.renene.2024.121195.

[196]     J. Liu, S. Hamid Fauziah, L. Zhong, J. Jiang, G. Zhu, and M. Yan, “Conversion of kitchen waste effluent to H2-rich syngas via supercritical water gasification: Parameters, process optimization and Ni/Cu catalyst,” Fuel, vol. 314, 2022, Art. no. 123042, doi: 10.1016/j.fuel.2021.123042.

[197]     I. M. Dias, L. C. Mourão, L. A. Andrade, G. B. M. Souza, J. C. V. Viana, S. B. Oliveira, C. G. Alonso, “Degradation of antibiotic amoxicillin from pharmaceutical industry wastewater into a continuous flow reactor using supercritical water gasification,” Water Research, vol. 234, 2023, Art. no. 119826, doi: 10.1016/j.watres. 2023.119826.

[198]     L. Lu, W. Wei, F. Liu, Z. Ge, H. Jin, Y. Chen, and L. Guo, “Sulfur transformation mechanism during supercritical water gasification of black liquor,” Fuel, vol. 338, 2023, Art. no. 127333, doi: 10.1016/j.fuel.2022.127333.

[199]     C. Siah Lee, A. V. Conradie, and E. Lester, “The integration of low temperature supercritical water gasification with continuous in situ nano-catalyst synthesis for hydrogen generation from biomass wastewater,” Chemical Engineering Journal, vol. 455, 2023, Art. no. 140845, doi: 10.1016/ j.cej.2022.140845.

[200]     M. Yan, J. Liu, K. Yoshikawa, J. Jiang, Y. Zhang, G. Zhu, Y. Liu, and D. Hantoko, “Cascading disposal for food waste by integration of hydrothermal carbonization and supercritical water gasification,” Renewable Ene

Full Text: PDF

DOI: 10.14416/j.asep.2025.05.008

Refbacks

  • There are currently no refbacks.