Role of Tin Metal in Red Visible Light in Diesel Oil Desulfurization Process with Looping Process System
Abstract
Keywords
[1] J. L. Holechek, H. M. E. Geli, M. N. Sawalhah, and R. Valdez, “A global assessment: Can renewable energy replace fossil fuels by 2050?,” Sustainability, vol. 14, no. 8, p. 4792, Apr. 2022, doi: 10.3390/su14084792.
[2] R. Javadli and A. de Klerk, “Desulfurization of heavy oil,” Applied Petrochemical Research, vol. 1, no. 1–4, pp. 3–19, Mar. 2012, doi: 10.1007/s13203-012-0006-6.
[3] M. Ahmadian and M. Anbia, “Oxidative desulfurization of liquid fuels using polyoxometalate-based catalysts: A review,” Energy & Fuels, vol. 35, no. 13, pp. 10347–10373, Jul. 2021, doi: 10.1021/acs.energyfuels. 1c00862.
[4] T. A. Saleh, Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering. Pennsylvania: IGI Global, 2016. doi: 10.4018/978-1-4666-9545-0.
[5] N. Sönnichsen. “Daily Global Crude Oil Demand 2006–2026,” Statista.com. https://www.statista.com/statistics/271823/daily-global-crude-oil-demand-since-2006/ (accessed Apr. 15, 2023).
[6] M. Hossain, H. Park, and H. Choi, “A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil,” Catalysts, vol. 9, no. 3, p. 229, Mar. 2019, doi: 10.3390/catal9030229.
[7] H. Li, Y. Li, L. Sun, S. Xun, W. Jiang, M. Zhang, W. Zhu, and H. Li, “H2O2 decomposition mechanism and its oxidative desulfurization activity on hexagonal boron nitride monolayer: A density functional theory study,” Journal of Molecular Graphics and Modelling, vol. 84, pp. 166–173, Sep. 2018, doi: 10.1016/j.jmgm.2018. 07.002.
[8] I. Shafiq, S. Shafique, P. Akhter, M. Ishaq, W. Yang, and M. Hussain, “Recent breakthroughs in deep aerobic oxidative desulfurization of petroleum refinery products,” Journal of Cleaner Production, vol. 294, Apr. 2021, Art. no. 125731, doi: 10.1016/j.jclepro.2020.125731.
[9] Y. N. Prajapati and N. Verma, “Hydrodesulfurization of thiophene on activated carbon fiber supported NiMo catalysts,” Energy & Fuels, vol. 32, no. 2, pp. 2183–2196, Feb. 2018, doi: 10.1021/acs.energyfuels.7b03407.
[10] B. Saha, S. Vedachalam, and A. K. Dalai, “Review on recent advances in adsorptive desulfurization,” Fuel Processing Technology, vol. 214, Apr. 2021, Art. no. 106685, doi: 10.1016/j.fuproc.2020.106685.
[11] K. X. Lee and J. A. Valla, “Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: A comprehensive review,” Reaction Chemistry & Engineering, vol. 4, no. 8, pp. 1357–1386, 2019, doi: 10.1039/C9RE00036D.
[12] P. S. Kulkarni and C. A. M. Afonso, “Deep desulfurization of diesel fuel using ionic liquids: Current status and future challenges,” Green Chemistry, vol. 12, no. 7, p. 1139, 2010, doi: 10.1039/c002113j.
[13] X. Zhou, T. Wang, H. Liu, X. Gao, C. Wang, and G. Wang, “Desulfurization through photocatalytic oxidation: A critical review,” ChemSusChem, vol. 14, no. 2, pp. 492–511, Jan. 2021, doi: 10.1002/cssc.202002144.
[14] M. F. Majid, H. F. Mohd Zaid, C. F. Kait, K. Jumbri, L. C. Yuan, and S. Rajasuriyan, “Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: A review,” Journal of Molecular Liquids, vol. 306, pp. 1–29. May 2020, Art. no. 112870, doi: 10.1016/j.molliq.2020.112870.
[15] M. H. Ibrahim, M. Hayyan, M. A. Hashim, and A. Hayyan, “The role of ionic liquids in desulfurization of fuels: A review,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 1534–1549, Sep. 2017, doi: 10.1016/j.rser.2016. 11.194.
[16] J. Ye, P. Zhang, G. Zhang, S. Wang, M. Nabi, Q. Zhang, and H. Zhang, “Biodesulfurization of high sulfur fat coal with indigenous and exotic microorganisms,” Journal of Cleaner Production, vol. 197, pp. 562–570, Oct. 2018, doi: 10.1016/ j.jclepro.2018.06.223.
[17] C. N. C. Hitam, A. A. Jalil, and A. A. Abdulrasheed, “A review on recent progression of photocatalytic desulphurization study over decorated photocatalysts,” Journal of Industrial and Engineering Chemistry, vol. 74, pp. 172–186, Jun. 2019, doi: 10.1016/j.jiec.2019.02.024.
[18] A. A. Aabid, J. I. Humadi, G. S. Ahmed, A. T. Jarullah, M. A. Ahmed, and W. S. Abdullah, “Enhancement of desulfurization process for light gas oil using new zinc oxide loaded over alumina nanocatalyst,” Applied Science and Engineering Progress, vol. 16, no. 3, Feb. 2023, Art. no. 6756, doi: 10.14416/j.asep.2023.02.007.
[19] O. Morton, “Solar energy: A new day dawning?: Silicon valley sunrise,” Nature, vol. 443, pp. 19–22, Apr. 2006, doi: 10.1038/443019A.
[20] N. S. Lewis, “Toward cost-effective solar energy use,” Science, vol. 315, no. 5813, pp. 798–801, Feb. 2007, doi: 10.1126/science.1137014.
[21] D. G. Nocera, “On the future of global energy,” Daedalus, vol. 135, no. 4, pp. 112–115, Apr. 2006, doi: 10.1162/DAED.2006.135.4.112.
[22] M. A. Gondal, M. N. Siddiqui, and K. Al-Hooshani, “Removal of sulfur compounds from diesel using ArF laser and oxygen,” Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, vol. 48, no. 13, pp. 1663–1669, 2013, doi: 10.1080/10934529.2013.815488.
[23] T.-A. Shinozaki, M. Suenaga, Y. Ko, E. Yamamoto, H. Murayama, and M. Tokunaga, “Ultraviolet light-induced decomposition of benzothiophene and dibenzothiophene derivatives for efficient sulfur removal without additives and catalysts,” Journal of Cleaner Production, vol. 370, Oct. 2022, Art. no. 133402, doi: 10.1016/ j.jclepro.2022.133402.
[24] B. D. Ravetz, A. B. Pun, E. M. Churchill, D. N. Congreve, T. Rovis, and L. M. Campos, “Photoredox catalysis using infrared light via triplet fusion upconversion,” Nature, vol. 565, no. 7739, pp. 343–346, Jan. 2019, doi: 10.1038/ s41586-018-0835-2.
[25] N. Sellet, M. Cormier, and J.-P. Goddard, “The dark side of photocatalysis: Near-infrared photoredox catalysis for organic synthesis,” Organic Chemistry Frontiers, vol. 8, no. 23, pp. 6783–6790, 2021, doi: 10.1039/D1QO01476E.
[26] S. Gisbertz, S. Reischauer, and B. Pieber, “Overcoming limitations in dual photoredox/ nickel-catalysed C–N cross-couplings due to catalyst deactivation,” Nature Catalysis, vol. 3, no. 8, pp. 611–620, Jul. 2020, doi: 10.1038/ s41929-020-0473-6.
[27] I. Pibiri, S. Buscemi, A. P. Piccionello, and A. Pace, “Photochemically produced singlet oxygen: Applications and perspectives,” ChemPhotoChem, vol. 2, no. 7, pp. 535–547, Jul. 2018, doi: 10.1002/cptc.201800076.
[28] A. A. Ghogare and A. Greer, “Using singlet oxygen to synthesize natural products and drugs,” Chemical Reviews, vol. 116, no. 17, pp. 9994–10034, Sep. 2016, doi: 10.1021/acs. chemrev.5b00726.
[29] L. Zeng, L. Huang, W. Lin, L.-H. Jiang, and G. Han, “Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation,” Nature Communications, vol. 14, no. 1, p. 1102, Feb. 2023, doi: 10.1038/s41467-023-36679-7.
[30] K. Rybicka-Jasińska, T. Wdowik, K. Łuczak, A. J. Wierzba, O. Drapała, and D. Gryko, “Porphyrins as promising photocatalysts for red-light-induced functionalizations of biomolecules,” ACS Organic & Inorganic Au, vol. 2, no. 5, pp. 422–426, Oct. 2022, doi: 10.1021/acsorginorgau. 2c00025.
[31] B. F. Buksh, S. D. Knutson, J. V. Oakley, N. B. Bissonnette, D. G. Oblinsky, M. P. Schwoerer, C. P. Seath, J. B. Geri, F. P. Rodriguez-Rivera, D. L. Parker, G. D. Scholes, A. Ploss, and D. W. C. MacMillan, “μmap-red: Proximity labeling by red light photocatalysis,” Journal of the American Chemical Society, vol. 144, no. 14, pp. 6154–6162, Apr. 2022, doi: 10.1021/jacs.2c01384.
[32] A. Ogura, N. Ichii, K. Shibata, and K. Takao, “Red-light-mediated Barton–Mccombie reaction,” Bulletin of the Chemical Society of Japan, vol. 93, no. 7, pp. 936–941, Jul. 2020, doi: 10.1246/ bcsj.20200087.
[33] P. Seal, J. Xu, S. De Luca, C. Boyer, and S. C. Smith, “Unraveling photocatalytic mechanism and selectivity in PET‐RAFT polymerization,” Advanced Theory and Simulations, vol. 2, no. 6, Jun. 2019, doi: 10.1002/adts.201900038.
[34] W. Qian, “On the physical process and essence of the photoelectric effect,” Journal of Applied Mathematics and Physics, vol. 11, no. 06, pp. 1580–1597, 2023, doi: 10.4236/jamp.2023.116104.
[35] B. Fan, C. Zhang, J. Chi, Y. Liang, X. Bao, Y. Cong, B. Yu, X. Li, and G. Li, “The molecular mechanism of retina light injury focusing on damage from short wavelength light,” Oxidative Medicine and Cellular Longevity, vol. 2022, pp. 1–14, Apr. 2022, doi: 10.1155/2022/8482149.
[36] P. R. Bunker, I. M. Mills, and P. Jensen, “The Planck constant and its units,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 237, Nov. 2019, Art. no. 106594, doi: 10.1016/j.jqsrt.2019.106594.
[37] N. Butto, “The origin and nature of the Planck constant,” Journal of High Energy Physics, Gravitation and Cosmology, vol. 07, no. 01, pp. 324–332, 2021, doi: 10.4236/jhepgc.2021.71016.
[38] Q. Zhu, S. Xiao, Z. Hua, D. Yang, M. Hu, Y. Zhu, and H. Zhong, “Near Infrared (NIR) light therapy of eye diseases: A review,” International Journal of Medical Sciences, vol. 18, no. 1, pp. 109–119, 2021, doi: 10.7150/ijms.52980.
[39] B. Koo, H. Yoo, H. J. Choi, M. Kim, C. Kim, and K. T. Kim, “Visible light photochemical reactions for nucleic acid-based technologies,” Molecules, vol. 26, no. 3, p. 556, Jan. 2021, doi: 10.3390/molecules26030556.
[40] M. A. Coronado, G. Montero, C. García, B. Valdez, R. Ayala, and A. Pérez, “Quality assessment of biodiesel blends proposed by the new Mexican policy framework,” Energies, vol. 10, no. 5, 2017, doi: 10.3390/en10050631.
[41] M. Qasim, T. M. Ansari, and M. Hussain, “Combustion, performance, and emission evaluation of a diesel engine with biodiesel like fuel blends derived from a mixture of Pakistani waste canola and waste transformer oils,” Energies, vol. 10, no. 7, 2017, doi: 10.3390/ en10071023.
[42] H. W. Ryu, Y. S. Kim, J. H. Kim, and I. W. Cheong, “Direct synthetic route for water-dispersible polythiophene nanoparticles via surfactant-free oxidative polymerization,” Polymer, vol. 55, no. 3, pp. 806–812, 2014, doi: 10.1016/j.polymer.2013.12.056.
[43] X. Li, S. Ai, Y. Huang, C. Huang, W. Yu, and Z. Mao, “Fast and reversible adsorption for dibenzothiophene in fuel oils with metallic nano-copper supported on mesoporous silica,” Environmental Science and Pollution Research, vol. 28, no. 3, pp. 2741–2752, 2021, doi: 10.1007/s11356-020-10715-1.
[44] F. Dai, Q. Zhuang, G. Huang, H. Deng, and X. Zhang, “Infrared spectrum characteristics and quantification of OH groups in coal,” ACS Omega, vol. 8, no. 19, pp. 17064–17076, May 2023, doi: 10.1021/acsomega.3c01336.
DOI: 10.14416/j.asep.2025.01.006
Refbacks
- There are currently no refbacks.