Kinetic Study and Optimization of Tetramethylthionine Chloride Photodegradation by Iron-Perylene MOF with Hydrogen Peroxide Using Response Surface Methodology
Abstract
Keywords
[1] T. Xia, Y. Lin, W. Li, and M. Ju, “Photocatalytic degradation of organic pollutants by MOFs based materials: A review,” Chinese Chemical Letters, vol. 32, no. 10, pp. 2975–2984, Oct. 2021, doi: 10.1016/j.cclet.2021.02.058.
[2] K. Siddique, M. Rizwan, M. J. Shahid, S. Ali, R. Ahmad, and H. Rizvi, “Textile wastewater treatment options: A critical review,” Enhancing Cleanup of Environmental Pollutants, vol. 2, pp. 183–207, 2017, doi: 10.1007/978-3-319-55423-5_6.
[3] M. R. Al-Mamun, S. Kader, M. S. Islam, and M. Z. H. Khan, “Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review,” Journal of Environmental Chemical Engineering, vol. 7, no. 5, Oct. 2019, Art. no. 103248, doi: 10.1016/J.JECE.2019.103248.
[4] M. Saeed, M. Usman, and A. ul Haq, “Catalytic Degradation of Organic Dyes in Aqueous Medium,” in Photochemistry and Photophysics - Fundamentals to Applications. London, UK: InTech, 2018. doi: 10.5772/intechopen.75008.
[5] A. Hardian, R. H. Putri, S. Budiman, and D. G. Syarif, “Sintesis keramik komposit ZrO2-ZnFe2O4 sebagai fotokatalis magnetik untuk degradasi metilen biru,” ALCHEMY Jurnal Penelitian Kimia, vol. 17, no. 1, pp. 43–53, 2021, doi: 10.20961/alchemy.17.1.39240.43-53.
[6] D. Mukherjee, B. Van der Bruggen, and B. Mandal, “Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: A review,” Chemosphere, vol. 295, May 2022, Art. no. 133835, doi 10.1016/j.chemosphere.2022. 133835.
[7] J. Bedia, V. Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J. J. Rodríguez, and C. Belver, “A review on the synthesis and characterization of metal-organic frameworks for photocatalytic water purification,” Catalysts, vol. 9, no. 1, p. 52, 2019, doi: 10.3390/catal9010052.
[8] S. A. Younis, E. E. Kwon, M. Qasim, K.-H. Kim, T. Kim, D. Kukkar, X. Dou, and I. Ali, “Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/ energy applications,” Progress in Energy and Combustion Science, vol. 81, Nov. 2020, Art. no. 100870, doi: 10.1016/j.pecs.2020.100870.
[9] A. Zulys, A. Adawiah, J. Gunlazuardi, and M. D. L. Yudhi, “Light-harvesting metal-organic frameworks (MOFs) La-PTC for photocatalytic dyes degradation,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 16, no. 1, pp. 170–178, 2021, doi: 10.9767/bcrec.16.1. 10309.170-178.
[10] A. Adawiah, R. N. Fitria, N. Saridewi, F. M. Azhar, M. S. Gunawan, and S. Komala, “Synthesis glycine-modulated metal-organic framework Cr-PTC-Gly for synergetic methylene blue adsorption and photodegradation under visible light irradiation,” Molekul, vol. 17, no. 3, pp. 374–382, 2022, doi: 10.20884/1.jm. 2022.17.3.6126.
[11] N. Saridewi, F. M. Azhar, P. A. Abdillah, A. Zulys, S. Nurbayti, L. Tulhusna, and A. Adawiah, “Synthesize metal-organic frameworks from chromium metal ions and ptcda ligands for methylene blue photodegradation,” Rasayan Journal of Chemistry, vol. 15, no. 4, pp. 2544–2550, 2022, doi: 10.31788/RJC.2022.1547046.
[12] A. Adawiah, W. Oktavia, N. Saridewi, F. M. Azhar, R. N. Fitria, M. S. Gunawan, S. Komala, and A. Zulys, “Synthesis metal-organic framework (MOFs) Cr-PTC-HIna modulated isonicotinic acid for methylene blue photocatalytic degradation,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 17, no. 2, pp. 383–393, 2022, doi: 10.9767/bcrec.17.2.13930.383-393.
[13] A. Adawiah, M. D. L. Yudhi, and A. Zulys, “Photocatalytic degradation of methylene blue and methyl orange by Y-PTC metal-organic framework,” Jurnal Kimia Valensi, vol. 7, no. 2, pp. 129–141, 2021, doi: 10.15408/jkv.v7i2.22267.
[14] M. Fathurrahman, A. Zulys, and J. Gunlazuardi, “Fotodegradasi metilen biru oleh metal organic framework (MOF) Fe-PTC dengan penambahan H2O2 dan dioptimasi menggunakan desain box behnken,” Jurnal Kartika Kimia, vol. 6, no. 2, pp. 131–144, 2024, doi: 10.26874/jkk.v6i2.228.
[15] A. Zulys, M. Defania, J. Gunlazuardi, and Adawiah, “Glycine-modulated zirconium perylene-based metal-organic framework for rhodamin B photocatalytic degradation,” Molekul, vol. 18, no. 3, pp. 497–507, 2023, doi: 10.20884/ 1.jm.2023.18.3.9126.
[16] M. T. D. C. Español, E. R. J. G. Garcia, L. A. V. Maligaya, C. M. S. Santos, J. A. H. Santos, N. G. Suarnaba, R. V. C. Rubi, and R. Raguindin, “Ultrasound-assisted biomimetic synthesis of MOF-Hap nanocomposite via 10xSBF-like for the photocatalytic degradation of metformin,” Applied Science and Engineering Progress, vol. 17, no. 2, 2024, Art. no. 7251, doi: 10.14416/ j.asep.2023.11.002.
[17] J. M. Seco, E. S. Sebastián, J. Cepeda, B. Biel, A. S. Castillo, B. Fernández, D. P. Morales, M. Bobinger, S. G. Ruiz, F. C. Loghin, A. Rivadeneyra, and A. R. Diéguez, “A potassium metal-organic framework based on perylene-3,4,9,10-tetracarboxylate as sensing layer for humidity actuators,” Scientific Reports, vol. 8, no. 1, 2018, Art. no. 14414, doi: 10.1038/s41598- 018-32810-7.
[18] L. C. Christina, J. Gunlazuardi, and A. Zulys, “Synthesis and characterization of lanthanide metal-organic framework with perylene 3,4,9,10-tetracarboxylate ligand,” in IOP Conference Series: Materials Science and Engineering, 2020, doi: 10.1088/1757-899X/902/ 1/012046.
[19] A. Zulys, A. Adawiah, and N. Nasruddin, “Efficient degradation of methylene blue using La-PTC-HIna/Ti3C2Tx MXene: Adsorption and photocatalytic degradation,” Indonesian Journal of Chemistry, vol. 22, no. 5, pp. 1195–1204, 2022, doi: 10.22146/ijc.71692.
[20] S. Demirci, G. Gizer, O. Polat, M. K. Ram, and N. Sahiner, “The synthesis and characterization of PTCDA-Co(II), and PTCDA-La(III) fluorescent MOFs,” Inorganica Chimica Acta, vol. 542, Nov. 2022, Art. no. 121102, doi: 10.1016/j.ica.2022.121102.
[21] A. Zulys, D. Asrianti, and J. Gunlazuardi, “Synthesis and characterization of metal-organic frameworks based on nickel and perylene dyes as water splitting photocatalyst,” AIP Conference Proceedings, vol. 2243, pp. 5–9, 2020, doi: 10.1063/5.0005001.
[22] S. Sowmiyha, V. V. Kumar, J. Pitchaimani, V. Madhu, R. Thiagarajan, N. S. Subramanian, and S. P. Anthony, “Self-assembly of water-soluble perylene tetracarboxylic acid with metal cations: Selective fluorescence sensing of Cu2+ and Pb2+ ions in paper strips, zebrafish, and yeast,” Journal of Luminescence, vol. 203, pp. 42–49, 2018, doi: 10.1016/j.jlumin.2018.06.026.
[23] I. Susanti, R. M. Iqbal, R. A. Rachman, and T. A. Pradana, “Photocatalytic activity and kinetic study of methylene blue degradation using N-doped TiO2 with zeolite-NaY,” CHEESA: Chemical Engineering Research Articles, vol. 4, no. 2, p. 75, Aug. 2021, doi: 10.25273/cheesa. v4i2.7646.75-81.
[24] N. N. Bahrudin, “Evaluation of degradation kinetic and photostability of immobilized TiO2/activated carbon bilayer photocatalyst for phenol removal,” Applied Surface Science Advances, vol. 7, Feb. 2022, Art. no. 100208, doi: 10.1016/j.apsadv.2021.100208.
[25] D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, 5th ed. USA: Cengage Learning, pp. 14–87, 2009.
[26] O. S. Bull, I. Bull, G. K. Amadi, C. Obaalologhi Odu, and E. O. Okpa, “A review on metal-organic frameworks (MOFS), synthesis, activation, characterization, and application,” Oriental Journal of Chemistry, vol. 38, no. 3, pp. 490–516, Jun. 2022, doi: 10.13005/ojc/380301.
[27] R. Ediati, M. Kahardian, and D. Hartanto, “Pengaruh perbandingan pelarut etanol dan dimetilformamida pada sintesis Metal Organik Framework HKUST-1,” Akta Kimia Indonesia, vol. 1, no. 1, p. 25, Nov. 2016, doi: 10.12962/ j25493736.v1i1.1425.
[28] N. Riezzati, Y. K. Krisnandi, and A. Zulys, “Metal-organic frameworks of lanthanum and iron using BDC linker as catalysts for glucose conversion into 5-hydroxymethylfurfural (5-HMF),” in IOP Conference Series: Materials Science and Engineering, vol. 902, 2020, doi: 10.1088/1757-899X/902/1/012044.
[29] A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chemical Society Reviews, vol. 38, no. 1, pp. 253–278, 2009, doi: 10.1039/b800489g.
[30] R. Seetharaj, P. V. Vandana, P. Arya, and S. Mathew, “Dependence of solvents, pH, molar ratio and temperature in tuning metal-organic framework architecture,” Arabian Journal of Chemistry, vol. 12, no. 3, pp. 295–315, 2019, doi: 10.1016/j.arabjc.2016.01.003.
[31] L. L. Zulfa, R. Ediati, A. R. P. Hidayat, R. Subagyo, N. Faaizatunnisa, Y. Kusumawati, D. Hartanto, N. Widiastuti, W. P. Utomo, and M. Santoso “Synergistic effect of modified pore and heterojunction of MOF-derived α-Fe2O3/ZnO for superior photocatalytic degradation of methylene blue,” RSC Advances, vol. 13, no. 6, pp. 3818–3834, Jan. 2023, doi: 10.1039/d2ra07946a.
[32] Y. Chen, B. Zeng, L. Lai, L. Luo, P. Xie, Q. Shao, Z. Liu, and J. Ma, “Sulfite activation using FeO as a source of ferrous ions for fluoxetine degradation: A collaborated experimental and DFT study,” Chemical Engineering Journal, vol. 441, Aug. 2022, Art. no. 135960, doi: 10.1016/j.cej.2022.135960.
[33] F. Ambroz, T. J. Macdonald, V. Martis, and I. P. Parkin, “Evaluation of the BET theory for the characterization of meso and microporous MOFs,” Small Methods, vol. 2, no. 11, 2018, Art. no. 1800173, doi: 10.1002/smtd.201800173.
[34] M. M. Karkare, “The Direct transition and not Indirect transition, is more favorable for Band Gap calculation of Anatase TiO2 nanoparticles,” International Journal of Scientific & Engineering Research, vol. 6, no. 12, pp. 48–53, 2015.
[35] Q. He, Y. Fu, X. Ge, A. M. Al-Enizi, A. Nafady, Q. Wang, and S. Ma “Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction,” Journal of Environmental Chemical Engineering, vol. 9, no. 5, Oct. 2021, Art. no. 105961, doi: 10.1016/j.jece.2021.105961.
[36] C. K. Lin, D. Zhao, W. Y. Gao, Z. Yang, J. Ye, T. Xu, Q. Ge, S. Ma, and D. J. Liu, “Tunability of band gaps in metal-organic frameworks,” Inorg Chem, vol. 51, no. 16, pp. 9039–9044, Aug. 2012, doi: 10.1021/ic301189m.
[37] A. Zulys, Q. A’Yun, and J. Gunlazuardi, “Synthesis of metal-organic frameworks based on lanthanum metal and perylene ligand as photocatalyst for hydrogen gas production,” in AIP Conference Proceedings, American Institute of Physics Inc., 2020, Art. no. 020034, doi: 10.1063/5.0005000.
[38] L. J. Kusumawardani, T. Widyyanti, A. Iryani, U. Hasanah, and N. Nurlela, “Optimization and mechanism elucidation of catalytic photodegradation methylene blue by TiO2/zeolite coal fly ash nanocomposite under H2O2 presence,” Jurnal Sains Natural, vol. 14, no. 2, pp. 98–108, 2024, doi: 10.31938/ jsn.v14i2.722
[39] R. H. Myers, D. C. Montogomery, and C. M. A. Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed. USA: John Wiley & Sons, Inc.,2009, pp. 281–336.
[40] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, vol. 76, no. 5, pp. 965–977, Sep. 2008, doi: 10.1016/j.talanta.2008. 05.019.
[41] L. A. Indriyani, Z. Arif, R. Linda, H. Purwaningsih, and M. Rafi, “Pengoptimuman Kondisi Adsorpsi Cd(II) oleh Adsorben Berbasis Silika Termodifikasi Glisina Menggunakan Central Composite Design,” Jurnal Kimia Sains dan Aplikasi, vol. 22, no. 5, pp. 184–191, Sep. 2019, doi: 10.14710/jksa.22.5.184-191.DOI: 10.14416/j.asep.2025.02.002
Refbacks
- There are currently no refbacks.