Plasmon Properties of Polydisperse Aluminum Nanoparticles Produced in Spark Discharge
Abstract
Keywords
[1] X. Gao, C. Wang, W. Bai, Y. Hou, and D. Che, “Aluminum-based fuels as energy carriers for controllable power and hydrogen generation—A review,” Energies, vol. 16, no. 1, p. 436, Dec. 2023, doi: 10.3390/en16010436.
[2] M. Y. Haller, D. Carbonell, M. Dudita, D. Zenhäusern, and A. Häberle, “Seasonal energy storage in aluminium for 100 percent solar heat and electricity supply,” Energy Conversion and Management: X, vol. 5, Jan. 2020, Art. no. 100017, doi: 10.1016/j.ecmx.2019.100017.
[3] B. Aduev, Y. Kraft, D. Nurmukhametov, G. Belokurov, N. Nelubina, and Z. Ismagilov, “Hydrogen production by oxidation of aluminum nanopowder in water under the action of laser pulses,” International Journal of Hydrogen Energy, vol. 48, pp. 22484–22494, Jul. 2023, doi: 10.1016/j.ijhydene.2023.03.096.
[4] M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Analytical chemistry, vol. 81, pp. 1397–1403, Jan. 2009, doi: 10.1021/ac802118s.
[5] S. K. Das, S. Mahapatra, and H. Lahan, “Aluminium-ion batteries: Developments and challenges,” Journal of Materials Chemistry A, vol. 5, pp. 6347–6367, Jan. 2017, doi: 10.1039/ c7ta00228a.
[6] Q. Hao, C. Wang, H. Huang, W. Li, D. Du, Di Han, T. Qiu, and P. K. Chu, “Aluminum plasmonic photocatalysis,” Scientific Reports, vol. 5, Oct. 2015, Art. no. 15288, doi: 10.1038/ srep15288.
[7] M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano, vol. 8, pp. 834–840, Dec. 2014, doi: 10.1021/nn405495q.
[8] A. A. Gromov, Y. I. Strokova, and A. A. Ditts, “Passivation films on particles of electroexplosion aluminum nanopowders: A review,” Russian Journal of Physical Chemistry B, vol. 4, no. 1, pp. 156–169, Apr. 2010, doi: 10.1134/S1990793 110010239.
[9] S. V. Gudkov, D. E. Burmistrov, V. V. Smirnova, A. A. Semenova, and A. B. Lisitsyn, “A mini review of antibacterial properties of Al2O3 nanoparticles,” Nanomaterials, vol. 12, no. 15, Jul. 2022, Art. no. 2635, doi: 10.3390/ nano12152635.
[10] M. A. Ansari, H. M. Khan, A. A. Khan, R. Pal, S. S. Cameotra, “Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates,” Journal of nanoparticle research, vol. 15, pp. 1–12, Sep. 2013 doi: 10.1007/s11051-013-1970-1.
[11] V. Klimov, Nanoplasmonics. Florida: Jenny Stanford Publishing, 2013, doi: 10.1201/b15442.
[12] D. V. Guzatov, S. V. Gaponenko, and H. V. Demir, “Plasmonic enhancement of electroluminescence,” AIP Advances, vol. 8, Jan. 2018, Art. no. 015324, doi: 10.1063/1.5019778.
[13] K. Khurana and N. Jaggi, “Localized surface plasmonic properties of Au and Ag nanoparticles for sensors: A review,” Plasmonics, vol. 16, pp. 981–999, Feb. 2021, doi: 10.1007/s11468-021-01381-1.
[14] S. V. Gaponenko, Introduction to Nanophotonics. Cambridge, UK: Cambridge University Press, 2010.
[15] J. E. Jacak and W. A. Jacak, “Plasmonic enhancement of solar cells efficiency: material dependence in semiconductor metallic surface nano-modification,” Plasmonics, vol. 7, p. 79113, Nov. 2018.
[16] H. Kaçuş, M. Biber, and Ş. Aydoğan, “Role of the Au and Ag nanoparticles on organic solar cells based on P3HT: PCBM active layer,” Applied Physics A, vol. 126, no. 10, p. 817, Sep. 2020.
[17] B. Ashok, M. Umamahesh, N. Hariram, S. Siengchin, and A. V. Rajulu, “Modification of waste leather trimming with in situ generated silver nanoparticles by one step method,” Applied Science and Engineering Progress, vol. 14, no. 2, Mar. 2021, pp. 236–246, doi: 10.14416/j.asep.2021.01.007.
[18] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Advanced materials, vol. 25, pp. 3264–3294, Jun. 2013, doi: 10.1002/adma. 201205076.
[19] P. Singh, Z. Yang, V. Viswanathan, and J. Stevenson, “Observations on the structural degradation of silver during simultaneous exposure to oxidizing and reducing environments,” Journal of Materials Engineering and Performance, vol. 13, pp. 287–294, Jun. 2004, doi: 10.1361/10599490419261.
[20] A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, “Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures,” Applied Physics Letters, vol. 101, p. 81110, Aug. 2012, doi: 10.1063/1.4747489.
[21] J. Hu, L. Chen, Z. Lian, M. Cao, H. Li, W. Sun, N. Tong, and H. Zeng, “Deep-Ultraviolet–Blue-Light Surface Plasmon Resonance of Al and Alcore /Al2O3shell in Spherical and Cylindrical Nanostructures,” The Journal of Physical Chemistry C, vol. 116, pp. 15584–15590, Jul. 2012, doi: 10.1021/jp305844g.
[22] V. I. Borisov, A. A. Lizunova, A. K. Mazharenko, D. Malo, A. A. Ramanenka, I. A. Shuklov, and V. V. Ivanov, “Aluminum nanoparticles synthesis in spark discharge for ultraviolet plasmonics,” Journal of Physics: Conference Series, vol. 1695, p. 12021, Dec. 2020, doi: 10.1088/1742-6596/1695/1/012021.
[23] S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-Based DNA detection,” Nano letters, vol. 17, pp. 5071–5077, Aug. 2017, doi: 10.1021/acs.nanolett.7b02338.
[24] Y. Gutiérrez, R. Alcaraz de la Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Applied Sciences, vol. 8, no. 1, p. 64, Jan. 2018, doi: 10.3390/app8010064.
[25] Z. Li, C. Li, J. Yu, Z. Li, X. Zhao, A. Liu, S. Jiang, C. Yang, C. Zhang, and B. Man, “Aluminum nanoparticle films with an enhanced hot-spot intensity for high-efficiency SERS,” Optics express, vol. 28, pp. 9174–9185, Mar. 2020, doi: 10.1364/OE.389886.
[26] Y. Wang, H. Gao, Y. Liu, D. Li, B. Zhao, W. Liang, Y. Sun, and L. Jiang, “Large-scale controllable fabrication of aluminum nanobowls for surface plasmon-enhanced fluorescence,” Nano Research, vol. 16, pp. 10131–10138, Jul. 2023, doi: 10.1007/s12274-023-5492-6.
[27] H. Ghorbani, “A review of methods for synthesis of Al nanoparticles,” Oriental Journal of Chemistry, vol. 30, pp. 1941–1949, Dec. 2014, doi: 10.13005/ojc/300456.
[28] A. A. Lizunova, D. Malo, D. V. Guzatov, I. S. Vlasov, E. I. Kameneva, I. A. Shuklov, M. N. Urazov, A. A. Ramanenka, and V. V. Ivanov, “Plasmon-enhanced ultraviolet luminescence in colloid solutions and nanostructures based on aluminum and ZnO nanoparticles,” Nanomaterials, vol. 12, p. 4051, Nov. 2022, doi: 10.3390/nano 12224051.
[29] J. A. Haber and W. E. Buhro, “Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth,” Journal of the American Chemical Society, vol. 120, no. 42, pp. 10847–10855, Oct. 1998, doi: 10.1021/ja981972y.
[30] M. Castilla, S. Schuermans, D. Gerard, J. Martin, T. Maurer, U. Hananel, G. Markovich, J. Plain, and J. Proust, “Colloidal Synthesis of Crystalline Aluminum Nanoparticles for UV Plasmonics,” ACS Photonics, vol. 9, pp. 880–887, Mar. 2022, Art. no. 1615, doi: 10.1021/acsphotonics. 1c01615.
[31] M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Letters, vol. 15, pp. 2751–2755, Apr. 2015, doi: 10.1021/acs.nanolett.5b00614.
[32] A. Muravitskaya, A. Gokarna, A. Movsesyan, S. Kostcheev, A. Rumyantseva, C. Couteau, G. Lerondel, A.L. Baudrion, S. Gaponenko, and P. Adam, “Refractive index mediated plasmon hybridization in an array of aluminium nanoparticles,” Nanoscale, vol. 12, pp. 6394–6402, Feb. 2020, doi: 10.1039/C9NR09393A.
[33] K. Thyagarajan, C. Santschi, P. Langlet, and O. J. F. Martin, “Highly improved fabrication of Ag and Al nanostructures for UV and nonlinear plasmonics,” Advanced Optical Materials, vol. 4, pp. 871–876, Mar. 2016, doi: 10.1002/adom. 201500740.
[34] L. X. Qian, W. Li, Z. Gu, J. Tian, X. Huang, P. T. Lai, and W. Zhang, “Ultra‐Sensitive β‐Ga2O3 Solar‐Blind Photodetector with High‐Density Al@Al2O3 Core−Shell Nanoplasmonic Array,” Advanced Optical Materials, vol. 10, Jun. 2022, Art. no. 2102055, doi: 10.1002/adom.202102055.
[35] J. L. Gottfried, D. K. Smith, C. C. Wu, and M. L. Pantoya, “Improving the explosive performance of aluminum nanoparticles with Aluminum Iodate Hexahydrate (AIH),” Scientific reports, vol. 8, p. 8036, May 2018, doi: 10.1038/s41598-018-26390-9.
[36] M. Gazanfari, M. Karimzadeh, S. Ghorbani, M. R. Sadeghi, G. Azizi, H. Karimi, N. Fattahi, and Z. Karimzadeh, “Synthesis of aluminium nanoparticles by arc evaporation of an aluminium cathode surface,” Bulletin of Materials Science, vol. 37, pp. 871–876, Jun. 2014, doi: 10.1007/s12034-014-0019-0.
[37] M. I. Lerner, A. S. Lozhkomoev, A. V. Pervikov, and O. V. Bakina, “Synthesis of Al–Al2O3 and Al–Aln nanoparticle composites via electric explosion of wires,” Russian Physics Journal, vol. 59, pp. 422–429, Jul. 2016, doi: 10.1007/s11182-016-0789-5.
[38] A. A. Gromov, U. Förter-Barth, and U. Teipel, “Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: Characterisation and reactivity with air and water,” Powder Technology, vol. 164, pp. 111–115, May 2006, doi: 10.1016/j.powtec. 2006.03.003
[39] R. S. Tabari, M. Halali, A. A Javadi, and M. H. Khanjanpour, “Experimental analysis and characterization of high-purity aluminum nanoparticles (Al-NPs) by electromagnetic levitation gas condensation (ELGC),” Nanomaterials, vol.10, pp. 111–115, Oct. 2020, doi: 10.3390/ nano10102084.
[40] W. Jang, H. Byun, and J. H. Kim, “Rapid preparation of paper-based plasmonic platforms for SERS applications,” Materials Chemistry and Physics, vol. 240, p. 122124, Jan. 2020, doi: 10.1016/j.matchemphys.2019.122124.
[41] A. A. Ramanenka, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, “Plasmonic enhancement of luminescence of fluorscein isothiocyanate and human immunoglobulin conjugates,” Journal of Applied Spectroscopy, vol. 81, pp. 222–225, May 2014, doi: 10.1007/s10812-014-9913-x.
[42] A. R. Markelonis, J. S. Wang, B. Ullrich, C. M. Wai, and G. J. Brown, “Nanoparticle film deposition using a simple and fast centrifuge sedimentation method,” Applied Nanoscience, vol. 5, pp. 457–468, Apr. 2015, doi: 10.1007/ s13204-014-0338-x.
[43] A. A. Efimov, P. V. Arsenov, V. I. Borisov, A. I. Buchnev, A. A. Lizunova, D. V. Kornyushin, S. S. Tikhonov, A. G. Musaev, M. N. Urazov, M. I. Shcherbakov, D. V. Spirin, and V. V. Ivanov, “Synthesis of nanoparticles by spark discharge as a facile and versatile technique of preparing highly conductive Pt nano-ink for printed electronics,” Nanomaterials, vol. 11, p. 234, Jan. 2021, doi: 10.3390/nano11010234.
[44] A. Kohut, L. P. Villy, A. Kéri, Á. Bélteki, D. Megyeri, B. Hopp, G. Galbács, and Z. Geretovszky, “Full range tuning of the composition of Au/Ag binary nanoparticles by spark discharge generation,” Scientific Reports, vol. 11, p. 5117, Mar. 2021, doi: 10.1038/s41598-021-84392-6.
[45] V. V. Ivanov, A. A. Efimov, D. A. Myl’nikov, and A.A. Lizunova, “Synthesis of nanoparticles in a pulsed-periodic gas discharge and their potential applications,” Russian Journal of Physical Chemistry A, vol. 92, pp. 607–612, Mar. 2018, doi: 10.1134/S0036024418030093.
[46] V. Ivanov, A. Lizunova, O. Rodionova, A. Kostrov, D. Kornyushin, A. Aybush, A. Golodyayeva, A. Efimov, and V. Nadtochenko, “Aerosol dry printing for SERS and photoluminescence-active gold nanostructures preparation for detection of traces in dye mixtures,” Nanomaterials, vol. 12, p. 448, Jan. 2022, doi: 10.3390/nano12030448.
[47] M. Slotte and R. Zevenhoven, “Energy efficiency and scalability of metallic nanoparticle production using arc/spark discharge,” Energies, vol. 10, no. 10, p. 1605, Oct. 2017, doi: 10.3390/ en10101605.
[48] M. E. Messing, “The advantages of spark discharge generation for manufacturing of nanoparticles with tailored properties,” Journal of Green Engineering, vol. 5, no. 3, pp. 83–96, Aug. 2016, doi: 10.13052/jge1904-4720.5346.
[49] N. S. Tabrizi, M. Ullmann, V. A. Vons, U. Lafont, and A. Schmidt-Ott, “Generation of nanoparticles by spark discharge,” Journal of Nanoparticle Research, vol. 11, pp. 315–332, Feb. 2009, doi: 10.1007/s11051-008-9407-y.
[50] J. Feng, N. Ramlawi, G. Biskos, and A. Schmidt-Ott, “Internally mixed nanoparticles from oscillatory spark ablation between electrodes of different materials,” Aerosol Science and Technology, vol. 52, pp. 505–514, May 2018, doi: 10.1080/02786826.2018.1427852.
[51] K. Khabarov, M. Nouraldeen, S. Tikhonov, A. Lizunova, A. Efimov, and V. Ivanov, “Modification of aerosol gold nanoparticles by nanosecond pulsed-periodic laser radiation,” Nanomaterials, vol. 11, no. 10, p. 2701, Oct. 2021, doi: 10.3390/nano11102701.
[52] A. Lizunova, A. Mazharenko, B. Masnaviev, E. Khramov, A. Efimov, A. Ramanenka, I. Shuklov, and V. Ivanov, “Effects of temperature on the morphology and optical properties of spark discharge germanium nanoparticles,” Materials, vol. 13, p. 4431, Oct. 2020, doi: 10.3390/ma13194431.
[53] K. Khabarov, M. Urazov, A. Lizunova, E. Kameneva, A. Efimov, and V. Ivanov, “Influence of Ag electrodes asymmetry arrangement on their erosion wear and nanoparticle synthesis in spark discharge,” Applied Sciences, vol. 11, p. 4147, May 2021, doi: 10.3390/app11094147.
[54] J. Katyal and R. K. Soni, “Size- and shape-dependent plasmonic properties of aluminum nanoparticles for nanosensing applications,” Journal of Modern Optics, vol. 60, pp. 1717–1728, Nov. 2013, doi: 10.1080/09500340. 2013.856483.
[55] S. V. Gaponenko and D. V. Guzatov, “Colloidal plasmonics for active nanophotonics,” Proceedings of the IEEE, vol. 108, pp. 704–720, May 2020, doi: 10.1109/JPROC.2019.2958875.
[56] A. A. Ramanenka, A. A. Lizunova, A. K. Mazharenko, M. F. Kerechanina, V. V. Ivanov, and S. V. Gaponenko, “Preparation and optical properties of isopropanol suspensions of aluminum nanoparticle,” Journal of Applied Spectroscopy, vol. 87, no. 4, pp. 662–667, Sep. 2020, doi: 10.1007/s10812-020-01051-w.
[57] B. A. Russell, “Protein encapsulated gold nanoclusters for biological applications,” Ph.D. Thesis, Department of Physics University of Strathclyde, Glasgow, Scotland, 2017, doi: 10.13140/RG.2.2.36594.40645.
[58] S. S. A. Tarek, S. B. Faruque, S. M. Sharafuddin, K. M. E. Hasan, A. K. M. M. Hossain, H. Ara, and Y. Haque, “Linear and thermo-optically generated nonlinear optical response of bovine serum albumin and its constituent amino acids in continuous wave z-scan,” AIP Advances, vol. 13, no. 3, Mar. 2023, doi: 10.1063/5.0135447.
[59] S Liu, Y. Sun, L. Chen, Q. Zhang, X. Li, and J. Shuai, “A review on plasmonic nanostructures for efficiency enhancement of organic solar cells,” Materials Today Physics, vol. 24, May 2022, Art. no. 100680, doi: 10.1016/j.mtphys. 2022.100680.
[60] J. W. Lee, G. Ha, J. Park, H. G. Song, J. Y. Park, J Lee, and J. K. Kim, “AlGaN deep-ultraviolet light-emitting diodes with localized surface plasmon resonance by a high-density array of 40 nm Al nanoparticles,” ACS Applied Materials & Interfaces, vol. 12, no. 32, pp. 36339–36346, Aug. 2020, doi: 10.1021/acsami.0c08916.
[61] R. Reinmann and M. Akram, “Temporal investigation of a fast spark discharge in chemically inert gases,” Journal of Physics D: Applied Physics, vol. 30, no. 7, p. 1125, Apr. 1997, doi: 10.1088/0022-3727/30/7/010.
[62] D. Mylnikov, A. Lizunova, V. Borisov, S. Paranin, and V. Ivanov, “Germanium nanoparticles, synthesis in spark discharge,” Oriental Journal of Chemistry, vol. 34, pp. 2677–2680, Oct. 2018, doi: 10.13005/ojc/340563.
[63] J. Feng, X. Guo, N. Ramlawi, T. V. Pfeiffer, R. Geutjens, S. Basak, H. Nirschl, G. Biskos, H. W. Zandbergen, and A. Schmidt-Ott, “Green manufacturing of metallic nanoparticles: A facile and universal approach to scaling up,” Journal of Materials Chemistry A, vol. 4, pp. 11222–11227, 2016, doi: 10.1039/C6TA03221D.
[64] A. Efimov, I. Volkov, A. Varfolomeev, A. Vasiliev, and V. Ivanov, “Tin oxide nanoparticles produced by spark ablation: Synthesis and gas sensing properties,” Oriental Journal of Chemistry, vol. 32, pp. 2909–2913, Dec. 2016, doi: 10.13005/ojc/320609.
[65] X. Xu, L. Li, W. Han, J. Luo, D. Zhang, Y. Wang, and G. Li, “Crystalline/amorphous Al/Al2O3 core/shell nanospheres as efficient catalysts for the selective transfer hydrogenation of α, β-unsaturated aldehydes,” Catalysis Communications, vol. 109, pp. 50–54, May 2018, doi: 10.1002/slct.201904480
[66] Y. Lin, X. Q. Liu, T. Wang, C. Chen, H. Wu, L. Liao, and C. Liu, “Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition,” Nanotechnology, vol. 24, no. 12, Mar. 2013, Art. no. 125705, doi: 10.1088/0957-4484/24/12/ 125705.
[67] T. L. Temple and D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” Journal of Applied Physics, vol. 109, no. 8, Apr. 2011, doi: 10.1063/1.3574657.
[68] J. Gesner, M. L. Pantoya, and V. I. Levitas, “Effect of oxide shell growth on nano-aluminum thermite propagation rates,” Combustion and Flame, vol. 159, no. 11, pp. 3448–3453, Nov. 2012, doi: 10.1016/j.combustflame.2012.06.002.
[69] M. T. Swihart, “Vapor-phase synthesis of nanoparticles,” Current Opinion in Colloid & Interface Science, vol. 8, no. 1, pp. 127–133, Mar. 2003, doi: 10.1016/S1359-0294(03)00007-4.
[70] G. Maidecchi, G. Gonella, R. Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano, vol. 7, pp. 5834–5841, Jul. 2013, doi: 10.1021/nn400918n.
[71] J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation,” ACS Nano, vol. 5, pp. 8070–8079, Oct. 2011, doi: 10.1021/nn202645b.
[72] I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Scientific Reports, vol. 7, p. 5934, Jul. 2017, doi: 10.1038/s41598-017-06403-9.
[73] Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” Journal of Applied Physics, vol. 104, Oct. 2008, Art. no. 083107, doi: 10.1063/ 1.2999370.
[74] V. K. Pustovalov, and L. G. Astafyeva, “Influence of Shell Parameters on Optical Properties of Spherical Metallic Core‐Oxide Shell Nanoparticles,” Journal of Nanomaterials, vol. 2015, Jan. 2015, Art. no. 812617, doi: 10.U55/2015/812617.
[75] J. Katyal, and R. K. Soni, “Size-and shape-dependent plasmonic properties of aluminum nanoparticles for nanosensing applications,” Journal of Modern Optics, vol. 60, pp. 1717–1728, Nov. 2013, doi: 10.1080/09500340.2013. 856483.
[76] Y. Wei, Y. Gu, M. Zhao, Y. Dong, J. Chen, and H. Zeng, “Deep-Ultraviolet Plasmon Resonances in Al-Al2O3@C Core–Shell Nanoparticles Prepared via Laser Ablation in Liquid,” ACS Applied Electronic Materials, vol. 2, pp. 802–807, Mar. 2020, doi: 10.1021/acsaelm.9b00851.
[77] A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Scientific Reports, vol. 5, p. 7779, Jan. 2015, doi: 10.1038/ srep07779.
[78] O. Kulakovich, N. Strekal, M. Artemyev, A. Stupak, S. Maskevich, and S. Gaponenko, “Improved method for fluorophore deposition atop a polyelectrolyte spacer for quantitative study of distance-dependent plasmon-assisted luminescence,” Nanotechnology, vol. 17, pp. 5201–5206, Oct. 2006, doi: 10.1088/0957-4484/17/20/026.
[79] Q. T. Pham, G. L. Ngo, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Unraveling the Dominant Size Effect in Polydisperse Solutions and Maximal Electric Field Enhancement of Gold Nanoparticles,” Photonics, vol. 11, p. 691, Jul. 2024, doi: 10.3390/photonics11080691.
[80] D. Malo, A. A. Lizunova, O. V. Vershinina, E. M. Filalova, and V. V. Ivanov, “Ultraviolet photoluminescence enhancement of zinc oxide nanocrystals in colloidal mixtures with spark discharge aluminum nanoparticles,” St. Petersburg Polytechnic University Journal. Physics and Mathematics, vol. 16, p. 443, Art. no. 3.2, 2023, doi: 10.18721/JPM.163.245.
[81] D. Hong, E. J. Jo, D. Bang, C. Jung, Y. E. Lee, Y. S. Noh, M. G. Shin, and M. G. Kim, “Plasmonic approach to fluorescence enhancement of mesoporous silica-coated gold nanorods for highly sensitive influenza A virus detection using lateral flow immunosensor,” ACS Nano, vol. 17, pp. 16607–16619, Sep. 2023, doi: 10.1021/acsnano.3c02651.
[82] Y. Jeong, Y. M. Kook, K. Lee, and W. G. Koh, “Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments,” Biosensors & Bioelectronics, vol. 111, pp. 102–116, Jul. 2018, doi: 10.1016/ j.bios.2018.04.007.
[83] H. Huang, J. Lai, J. Lu, and Z. Li, “Performance enhancement of ZnO ultraviolet detector by localized surface plasmon resonance of Al nanoparticles,” Applied Physics A, vol. 127, p. 679, Sep. 2021, doi: 10.1007/s00339-021-04820-2.
[84] S. Zhang, R. He, Y. Duo, R. Chen, L. Wang, J. Wang, and T. Wei, “Plasmon-enhanced deep ultraviolet Micro-LED arrays for solar-blind communications,” Optics Letters, vol. 48, pp. 3841–3844, Aug. 2023, doi: 10.1364/OL.496397.DOI: 10.14416/j.asep.2025.02.001
Refbacks
- There are currently no refbacks.