Page Header

High Yield Oil from Catalytic Pyrolysis of Polyethylene Terephthalate Using Natural Zeolite: A Review

Sunaryo Sunaryo, Suyitno Suyitno, Zainal Arifin, Muji Setiyo

Abstract


Polyethylene terephthalate (PET) waste has emerged as a critical environmental issue due to its widespread use, particularly in food and beverage packaging. Catalytic pyrolysis with natural zeolite presents a promising approach to convert PET into valuable benzene-rich oil, providing a sustainable pathway for plastic waste management. However, significant challenges persist, notably the generation of acidic byproducts such as terephthalic acid, which may lead to reactor blockages and catalyst deactivation. This review explores the role of natural zeolite catalysts in enhancing PET pyrolysis, facilitating the breakdown of PET into shorter-chain hydrocarbons, and improving oil yield and quality. Various modifications of natural zeolite, including activation, acid treatment, and metal impregnation, are assessed for their effects on catalytic performance. The review further examines mechanistic insights into the reaction pathways, including C–C bond scission, decarboxylation, and aromatization, supported by the acidic sites within zeolite. A bibliometric analysis of studies from 2014 to 2024 identifies research trends and existing gaps in PET pyrolysis, underscoring the need for innovative catalyst designs to reduce energy demands and mitigate unwanted byproducts. Recommendations are also provided for optimizing reaction conditions, including temperature, residence time, and catalyst composition, to enable scalable and energy-efficient PET pyrolysis processes. These findings emphasize the significant potential of natural zeolite as a cost-effective catalyst in transforming PET waste into alternative fuels, contributing to both environmental sustainability and advancements in waste-to-energy catalysis.

Keywords



[1]        Y. Y. Lim, A. Miskon, A. M. A. Zaidi, M. M. H. M. Ahmad, and M. A. Bakar, “Structural characterization analyses of low brass filler biomaterial for hard tissue implanted scaffold applications,” Materials, vol. 15, no. 4, 2022, doi: 10.3390/ma15041421.

[2]        S. Khan, R. Malviya, and K. K. Athankar, “Optimization and simulation of heat loss in pyrolysis reactor,” Materials Today: Proceedings, pp. 2643–2659, 2023, doi: 10.1016/j.matpr.2022.08.285.

[3]        H. H. Shah, M. Amin, A. Iqbal, I. Nadeem, M. Kalin, A. M. Soomar, and A. M. Galal, “A review on gasification and pyrolysis of waste plastics,” Frontiers in Chemistry, vol. 10, 2023, Art. no. 960894, doi: 10.3389/fchem. 2022.960894.

[4]        W. Kingsolver, “Effects of plastic and waste pollution on ocean communities in the asian pacific region,” Ballard Brief, Utah, USA, 2023.

[5]        K. Li, C. Cai, W. Zhou, Y. Wang, T. G. Y. Amy, Z. Sun, and Y. Min, “Tandem pyrolysis-catalytic upgrading of plastic waste towards kerosene-range products using Si-pillared vermiculite with transition metal modification,” Journal of Hazard Materials, vol. 465, 2024, Art. no. 133231, doi: 10.1016/j.jhazmat.2023. 133231.

[6]        P. Baranitharan, K. Ramesh, and R. Sakthivel, “Multi-attribute decision-making approach for Aegle marmelos pyrolysis process using TOPSIS and Grey Relational Analysis: Assessment of engine emissions through novel Infrared thermography,” Journal of Cleaner Production, vol. 234, pp. 315–328, Oct. 2019, doi: 10.1016/j.jclepro.2019.06.188.

[7]        Suhartono, A. Romli, B. H. Prabowo, P. Kusumo, and Suharto, “Converting styrofoam waste into fuel using a sequential pyrolysis reactor and natural zeolite catalytic reformer,” International Journal of Technology, vol. 14, no. 1, pp. 185–194, 2023, doi: 10.14716/ijtech. v14i1.4907.

[8]        G. A. Bani and M. D. Bani, “Pyrolysis of polyethylene from plastic waste using activated ende natural zeolite as a catalyst,” Applied Science and Engineering Progress, vol. 17, no. 2, 2024, doi: 10.14416/j.asep.2024.01.006.

[9]        A. J. Martín, C. Mondelli, S. D. Jaydev, and J. P. Ramírez, “Catalytic processing of plastic waste on the rise,” Chem, vol. 7, no. 6, pp. 1487–1533, 2021, doi: 10.1016/j.chempr.2020. 12.006.

[10]     M. Jiang, X. Wang, W. Xi, P. Yang, H. Zhou, J. Duan, M. Ratova, and D. Wu, “Chemical catalytic upgrading of polyethylene terephthalate plastic waste into value-added materials, fuels and chemicals,” Science of The Total Environment, vol. 912, 2024, Art. no. 169342, doi: 10.1016/j.scitotenv.2023.169342.

[11]     T. Taher, A. Munandar, N. Mawaddah, R. Putra, N. R. Palapa, and A. Lesbani, “Pyrolysis behavior of polyethylene terephthalate (PET) plastic waste under the presence of activated montmorillonite catalyst: TGA and EGA-MS studies,” in Proceedings of the International Conference on Emerging Smart Cities (ICESC2022), pp. 133–144, 2024.

[12]     O. Y. Yansaneh and S. H. Zein, “Recent advances on waste plastic thermal pyrolysis: A critical overview,” Processes, vol. 10, no. 2:232, 2022, doi: 10.3390/pr10020332.

[13]     S. Salamah and M. Maryudi, “Recycling of polyethylene terepthalate waste through pyrolysis process with silica–alumina catalyst,” Jurnal Rekayasa Kimia & Lingkungan, vol. 14, no. 1, pp. 104–111, Jul. 2019, doi: 10.23955/ rkl.v14i1.11954.

[14]     L. A. Agustina, Y. D. Lestari, A. A. Adhinanda, M. N. Ariesta, J. Choi, Y. P. Prananto, and R. Febriani, “Study of inorganic based anti-blocks as migration control of slip additive on surface polyethylene monolayer film,” Acta Chimica Asiana, vol. 7, no. 1, pp. 366–376, 2024, doi: 10.29303/aca.v7i1.196.

[15]     U.S. Geological Survey, “Mineral commodity summaries 2024,” U.S. Geological Survey, VA, USA, p. 212, 2024, doi: 10.3133/mcs2024.

[16]     K. D. Nugrahaningtyas, A. W. Budiman, A. I. S. Gusti, E. Heraldy, and Y. Hidayat, “The impact of pH preparation on the physical nature and metal phase of zeolite-supported metal catalyst,” Jurnal Riset Kimia, vol. 15, no. 2, pp. 65–74, Sep. 2024, doi: 10.25077/jrk.v15i2.678.

[17]     M. Jindal, V. C. S. Palla, and B. Thallada, “Effect of zeolite structure and Si/Al ratio on cotton stalks hydropyrolysis,” Bioresources Technology, vol. 376, May 2023, doi: 10.1016/j.biortech.2023.128933.

[18]     Y. Peng, Y. Wang, L. Ke, L. Dai, Q. Wu, K. Cobb, Y. Zeng, R. Zou, Y. Liu, and R. Ruan, “A review on catalytic pyrolysis of plastic wastes to high-value products,” Energy Conversion and Management, vol. 254, 2022, 115243, doi: 10.1016/j.enconman.2022.115243.

[19]     L. Y. Molefe, N. M. Musyoka, J. Ren, H. W. Langmi, M. Mathe, and P. G. Ndungu, “Polymer-based shaping strategy for zeolite templated carbons (ZTC) and their metal organic framework (MOF) composites for improved hydrogen storage properties,” Frontier Chemical, vol. 7, p. 864, 2019, doi: 10.3389/fchem.2019.00864.

[20]     Z. Luo, J. Kong, B. Ma, Z. Wang, J. Huang, and C. Zhao, “Liquefaction and hydrodeoxygenation of polymeric lignin using a hierarchical Ni microreactor catalyst,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 5, pp. 2158–2166, 2020, doi: 10.1021/ acssuschemeng.9b05574.

[21]     D. F. A. Husaeni and A. B. D. Nandiyanto, “Bibliometric using vosviewer with publish or perish (using google scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post covid-19 pandemic,” ASEAN Journal of Science and Technology, vol. 2, no. 1, pp. 19–46, Jun. 2021, doi: 10.17509/ajse.v2i1.37368.

[22]     C. E. J. Singh and C. A. Sunitha, “Chaotic and paillier secure image data sharing based on blockchain and cloud security,” Expert Systems with Applications, vol. 198, Jul. 2022, Art. no. 116874, doi: 10.1016/j.eswa.2022.116874.

[23]     M. Pahnila, A. Koskela, P. Sulasalmi, and T. Fabritius, “A review of pyrolysis technologies and the effect of process parameters on biocarbon properties,” Energies, vol.16, no.19, p. 6936, 2023, doi: 10.3390/en16196936.

[24]     A. Irawan, T. Kurniawan, N. Nurkholifah, M. Melina, A. B. D. Nandiyanto, M. A. Firdaus, H. Alwan, and Y. Bindar, “Pyrolysis of polyolefins into chemicals using low-cost natural zeolites,” Waste and Biomass Valorization, vol. 14, no. 5, pp. 1705–1719, 2023, doi: 10.1007/s12649-022-01942-3.

[25]     D. Supramono and S. D. Tiaradiba, “Influence of natural and h-beta zeolites on yield and composition of non-polar fraction of bio-oil in slow co-pyrolysis of biomass and polypropylene,” Key Engineering Materials, vol. 849, pp. 34–39, 2020, doi: 10.4028/www. scientific.net/KEM.849.34.

[26]     J. Huang, H. Meng, X. Luo, X. Mu, W. Xu, L. Jin, and B. Lai, “Insights into the thermal degradation mechanisms of polyethylene terephthalate dimer using DFT method,” Chemosphere, vol. 291, part 2, Mar. 2022, Art. no. 133112, doi: 10.1016/j.chemosphere.2021. 133112.

[27]     F. Abnisa and P. A. Alaba, “Recovery of liquid fuel from fossil-based solid wastes via pyrolysis technique: A review,” Journal of Environmental Chemical Engineering, vol. 9, no. 6, Dec. 2021, Art. no. 106593, doi: 10.1016/j.jece.2021.106593.

[28]     P. Kongsupapkul, K. Cheenkachorn, and S. Tontisirin, “Effects of MgO-ZSM-23 zeolite catalyst on the pyrolysis of PET bottle waste,” Applied Science and Engineering Progress, vol. 10, no. 3, pp. 205–211, 2017, doi: 10.14416/j.ijast.2017.08.004.

[29]     C. Park, S. Kim, Y. Kwon, C. Jeong, Y. Cho, C.G. Lee, S. Jung, K.Y. Choi, J. Lee, “Pyrolysis of polyethylene terephthalate over carbon-supported Pd catalyst, “Catalysts, vol. 10, no. 5, 496, May 2020, doi: 10.3390/ catal10050496.

[30]     H. Jia, H. Ben, Y. Luo, and R. Wang, “Catalytic fast pyrolysis of poly-(ethylene terephthalate) (PET) with zeolite and nickel chloride,” Polymers, vol. 12, no. 3, p. 705, Mar. 2020, doi: 10.3390/polym12030705.

[31]     C. Li, F. Ataei, F. Atashi, X. Hu, and M. Gholizadeh, “Catalytic pyrolysis of polyethylene terephthalate over zeolite catalyst: Characteristics of coke and the products,” International Journal of Energy Research, vol. 45, no. 13, pp. 19028–19042, Oct. 2021, doi: 10.1002/er.7078.

[32]     S. K. Pal, V. S. Prabhudesai, and R. Vinu, “Catalytic upcycling of post-consumer multilayered plastic packaging wastes for the selective production of monoaromatic hydrocarbons,” Journal of Environment Management, vol. 351, Feb. 2024, Art. no. 119630, doi: 10.1016/j.jenvman.2023.119630.

[33]     S. Du, J. A. Valla, R. S. Parnas, and G. M. Bollas, “Conversion of polyethylene terephthalate based waste carpet to benzene-rich oils through thermal, catalytic, and catalytic steam pyrolysis,” ACS Sustainable Chemistry & Engineering, vol. 4, no. 5, pp. 2852–2860, May 2016, doi: 10.1021/ acssuschemeng.6b00450.

[34]     Y. Xue, P. Johnston, and X. Bai, “Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics,” Energy Conversion and Management, vol. 142, pp. 441–451, Jun. 2017, doi: 10.1016/ j.enconman.2017.03.071.

[35]     E. Struhs, A. Mirkouei, H. Appiah, and A. G. McDonald, “Examination of in situ and ex situ catalytic fast pyrolysis and liquid fractionation utilizing a free-fall reactor,” Frontiers Industrial Microbiology, vol. 2, Jul. 2024, doi: 10.3389/ finmi.2024.1426067.

[36]     M. J. B. Kabeyi and O. A. Olanrewaju, “Review and design overview of plastic waste-to-pyrolysis oil conversion with implications on the energy transition,” Journal of Energy, vol. 2023, no. 1, pp. 1–25, May 2023, doi: 10.1155/2023/1821129.

[37]     N. Panchal and R. Vinu, “Resource recovery from discarded COVID-19 PPE kit through catalytic fast pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 170, Mar. 2023, Art. no. 105870, doi: 10.1016/j.jaap.2023.105870.

[38]     L. S. D. Silvarrey, A. McMahon, and A. N. Phan, “Benzoic acid recovery via waste poly(ethylene terephthalate) (PET) catalytic pyrolysis using sulphated zirconia catalyst,” Journal of Analytical and Applied Pyrolysis, vol. 134, pp. 621–631, Sep. 2018, doi: 10.1016/ j.jaap.2018.08.014.

[39]     L. Zhang, Q. Wu, L. Fan, R. Liao, J. Zhang, R. Zou, K. Cobb, R. Ruan, and Y. Wang, “Monocyclic aromatic hydrocarbons production from NaOH pretreatment metallized food plastic packaging waste through microwave pyrolysis coupled with ex-situ catalytic reforming,” Chemical Engineering Journal, vol. 484, Mar. 2024, Art. no. 149777, doi: 10.1016/j.cej.2024.149777.

[40]     K. Sivagami, D. Govindaraj, R. Selvaraj, P. Madhiyazhagan, N. Sriram, N. Siram, and I. Nambi, “Catalytic pyrolysis of polyolefin and multilayer packaging based waste plastics: a pilot scale study,” Process Safety and Environmental Protection, vol. 149, pp. 497–506, May 2021, doi: 10.1016/j.psep.2020. 10.038.

[41]     R. Miandad, M. Rehan, M. A. Barakat, A. S. Aburiazaiza, H. Khan, I. M. I. Ismail, J. Dhavamani, J. Gardy, A. Hassanpour, A. S. Nizami, “Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries,” Frontiers in Energy Research, vol. 7, 2019, doi: 10.3389/fenrg.2019.00027.

[42]     M. Konarova, N. Batalha, G. Fraga, M. H. M. Ahmed, S. Pratt, and B. Laycock, “Integrating PET chemical recycling with pyrolysis of mixed plastic waste via pressureless alkaline depolymerization in a hydrocarbon solvent,” Waste Management, vol. 174, pp. 24–30, Feb. 2024, doi: 10.1016/j.wasman.2023.11.023.

[43]     J. Lee, T. Lee, Y. F. Tsang, J. I. Oh, and E. E. Kwon, “Enhanced energy recovery from polyethylene terephthalate via pyrolysis in CO2 atmosphere while suppressing acidic chemical species,” Energy Conversion and Management, vol. 148, pp. 456–460, Sep. 2017, doi: 10.1016/j.enconman.2017.06.026.

[44]     K. Qian, W. Tian, W. Li, S. Wu, D. Chen, and Y. Feng, “Catalytic pyrolysis of waste plastics over industrial organic solid-waste-derived activated carbon: impacts of activation agents,” Processes, vol. 10, no. 12, Dec. 2022, doi: 10.3390/pr10122668.

[45]     P. Straka, O. Bicakova, and M. Supova, “Slow pyrolysis of waste polyethylene terephthalate yielding paraldehyde, ethylene glycol, benzoic acid and clean fuel,” Polymer Degradation and Stability, vol. 198, Apr. 2022, doi: 10.1016/j.polymdegradstab.2022.109900.

[46]     A. Dhahak, G. Hild, M. Rouaud, G. Mauviel, and V. B. Vitzthum, “Slow pyrolysis of polyethylene terephthalate: Online monitoring of gas production and quantitative analysis of waxy products,” Journal of Analytical and Applied Pyrolysis, vol. 142, 104664, Sep. 2019, doi: 10.1016/j.jaap.2019.104664.

[47]     S. Feng, Z. Zhen, X. Xu, J. Xu, Q. Huang, Z. Zhou, X. Li, H. Zhang, “Insight into the competitive reaction mechanism of polyethylene terephthalate (PET) pyrolysis by ReaxFF-based reactive molecular dynamics simulation,” Proceedings of the Combustion Institute, vol. 40, no. 1–4, Jan. 2024, doi: 10.1016/j.proci.2024.105462.

[48]     M. Olam and H. Karaca, “Characterization of products obtained of waste polyethylene terephthalate by pyrolysis,” Environmental Progress and Sustainable Energy, vol. 41, no. 4, Mar. 2022, doi: 10.1002/ep.13835.

[49]     P. Straka, O. Bicakova, and N. Cimova, “Low-temperature treatment of waste PET,” Paliva, vol. 13, no. 1, pp. 1–9, 2021, doi: 10.35933/ paliva.2021.01.01.

[50]     A. Dhahak, V. Carre, F. Aubriet, G. Mauviel, and V. B. Vitzthum, “Analysis of products obtained from slow pyrolysis of poly-(ethylene terephthalate) by fourier transform ion cyclotron resonance mass spectrometry coupled to electrospray ionization (ESI) and laser desorption ionization (LDI),” Industrial and Engineering Chemistry Research, vol. 59, no. 4, pp. 1495–1504, Jan. 2020, doi: 10.1021/ acs.iecr.9b05879.

[51]     K. Sivagami, K. V. Kumar, P. Tamizhdurai, D. Govindarajan, M. Kumar, and I. Nambi, “Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor,” RSC Advances, vol. 12, no. 13, pp. 7612–7620, Mar. 2022, doi: 10.1039/d1ra08673a.

[52]     F. Abnisa, “Enhanced liquid fuel production from pyrolysis of plastic waste mixtures using a natural mineral catalyst,” Energies, vol. 16, no. 3, Jan. 2023, Art. no. 1224, doi: 10.3390/en16031224.

[53]     M. Al-asadi and N. Miskolczi, “Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts,” in IOP Conference Series: Earth and Environmental Science, 2018. doi: 10.1088/1755-1315/154/1/012021

[54]     B. Alawa and S. Chakma, “Upgradation analysis and engine performance of hydrocarbon fuels produced through pyrolysis of thermoplastic polymers with Si and ZSM-5 modified catalyst,” Fuel Processing Tecnology, vol. 250, 107918, Nov. 2023, doi:10.1016/j. fuproc.2023.107918.

[55]     R. Miandad, M. A. Barakat, M. Rehan, A. S. Aburiazaiza, I. M. I. Ismail, and A. S. Nizami, “Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts,” Waste Management, vol. 69, pp. 66–78, Nov. 2017, doi: 10.1016/j.wasman.2017. 08.032.

[56]     S. Budsaereechai, A. J. Hunt, and Y. Ngernyen, “Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines,” RSC Advances, vol 9, pp. 5844–5857, 2019, doi: 10.1039/c8ra10058f.

[57]     J. Zhang, T. Chen, Y. Jiao, M. Cheng, L. L. Wang, J. L. Wang, X. Y. Li, Y. Q. Chen, “Improved activity of Ni–Mo/SiO2 bimetallic catalyst synthesized via sol-gel method for methylcyclohexane cracking,” Petroleum Science, vol. 18, no. 5, pp. 1530–1542, 2021, doi: 10.1016/j.petsci.2021.08.009.

[58]     D. K. Ratnasari, A. Bijl, W. Yang, and P. G. Jonsson, “Effect of H-ZSM-5 and Al-MCM-41 proportions in catalyst mixtures on the composition of bio-oil in ex-situ catalytic pyrolysis of lignocellulose biomass,” Catalysts, vol. 10, no. 8, p. 868, Aug. 2020, doi: 10.3390/catal10080868.

[59]     D. K. Ratnasari, M. A. Nahil, and P. T. Williams, “Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils”, Journal of Analytical and Applied Pyrolysis, vol. 124, pp. 631–637, Mar. 2017, doi: 10.1016/j.jaap.2016. 12.027.

[60]     B. Valle, R. Palos, J. Bilbao, and A. G. Gayubo, “Role of zeolite properties in bio-oil deoxygenation and hydrocarbons production by catalytic cracking,” Fuel Processing Technology, vol. 227, Mar. 2022, Art. no. 107130, doi: 10.1016/j.fuproc.2021.107130.

[61]     C. Cleetus, S. Thomas, and S. Varghese, “Synthesis of petroleum-based fuel from waste plastics and performance analysis in a CI engine”, Journal of Energy, vol. 2013, no. 1, Aug. 2018, Art. no. 608797, doi: 10.1155/ 2013/608797.

[62]     M. S. Al-Iessa, B. Y. Al-Zaidi, R. S. Almukhtar, Z. M. Shakor, and I. Hamawand, “Optimization of polypropylene waste recycling products as alternative fuels through non-catalytic thermal and catalytic hydrocracking using fresh and spent Pt/Al2O3 and NiMo/Al2O3 catalysts,” Energies, vol. 16, no. 13, Jul. 2023, doi: 10.3390/en16134871.

[63]     J. N. Cruz, K. D. Martínez, D. A. Zavariz, and I. P. Hernandez, “Review of the thermochemical degradation of PET: An alternative method of recycling,” Journal of Ecological Engineering, vol. 23, no. 9, pp. 319–330, 2022, doi: 10.12911/22998993/151766.

[64]     M. Syamsiro, D. Y. Mathias, H. Saptoadi, D. R. Sawitri, A.-S. Nizami, and M. Rehan, “Pyrolysis of compact disc (CD) case wastes to produce liquid fuel as a renewable source of electricity generation”, Energy Procedia, vol. 145, pp. 484–489, Jul. 2018, doi: 10.1016/ j.egypro.2018.04.096.

[65]     S. Cheng, M. Syamsiro, K. Yoshikawa, and T. Kamo, “The reforming performance of natural zeolite catalyst in a two-stage pyrolysis and reforming process for polypropylene and polystyrene,” in Proceedings of the Annual Conference of the Japan Institute of Energy, 2017, doi: 10.20550/jietaikaiyoushi.22.0_10 2016.

[66]     K. Moukahhal, L. Josien, H. Nouli, J. Toufaily, T. Hamieh, T. J. Daou, and B. Lebeau, “Guided crystallization of zeolite beads composed of ZSM-12 nanosponges, “Crystals, vol. 10, no. 9, pp. 1–15, Sep. 2020, doi: 10.3390/cryst10090828.

[67]     E. Djubaedah, D. A. Wulandari, Nasruddin, and Y. K. Krisnandi, “Surface area modification of natural zeolite through nacl counterbalanced treatment to apply in adsorption heat storage system,” Evergreen, vol. 7, no. 1, pp. 26–31, 2020, doi: 10.5109/2740938.

[68]     N. B. Singh, G. Nagpal, S. Agrawal, and Rachna, “Water purification by using adsorbents: A review,” Environmental Technology and Innovation, vol. 11, pp. 184–240, Aug. 2018, doi: 10.1016/j.eti.2018.05.006.

[69]     P. J. Reeve and H. J. Fallowfield, “Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms,” Journal of Environmental Management, vol 205, pp. 253–261, Jan. 2018, doi: 10.1016/j.jenvman.2017.09.077.

[70]     F. M. Carballo, N. M. Burbano, P. C. Mero, and N. E. Santos, “Cation exchange of natural zeolites: Worldwide research,” Sustainability, vol. 13, no. 14, 7751, Jul. 2021, doi: 10.3390/ su13147751.

[71]     Hendrawati, A. R. Liandi, M. Solehah, M. H. Setyono, I. Aziz, and Y. D. I. Siregar, “Pyrolysis of PP and HDPE from plastic packaging waste into liquid hydrocarbons using natural zeolite Lampung as a catalyst,” Case Studies in Chemical and Environmental Engineering, vol. 7, Jun. 2023, Art. no. 100290, doi: 10.1016/j.cscee.2022.100290.

[72]     T. Elysabeth, Zulnovri, G. Ramayanti, Setiadi, and Slamet, “Modification of Lampung and Bayah natural zeolite to enhance the efficiency of removal of ammonia from wastewater,” Asian Journal of Chemistry, vol. 31, no. 4, pp. 873–878, 2019, doi: 10.14233/ajchem.2019. 21810.

[73]     T. Kurniawan, Nuryoto, and Rahmayetty, “Characterization and application of bayah natural zeolites for ammonium capture: Isotherm and kinetic,” Materials Science Forum, vol. 988, pp. 51–64, Apr. 2020, doi: 10.4028/www.scientific.net/msf.988.51.

[74]     E. Wibowo, M. Rokhmat, Sutisna, R. Murniati, Khairurrijal, and M. Abdullah, “Identification of natural zeolite from Sukabumi, West Java, Indonesia: structure, chemical composition, morphology and molecular vibration,” Materials Research Express, vol. 4, no. 6, Jun. 2017, Art. no. 064002, doi: 10.1088/2053-1591/ aa731d.

[75]     J. P. Sutardji, J. C. Claudia, Y. H. Ju, J. A. Hriljac, T. Y. Chen, F. E. Soetaredjo, and S. P. Santoso, A. Kurniawan, and S. ismadji, “Ammonia removal from water using sodium hydroxide modified zeolite mordenite,” RSC Advances, vol. 102, pp. 83689–83699, 2015, doi: 10.1039/C5RA15419G.

[76]     T. Kurniawan, O. Muraza, K. Miyake, A.S. Hakeem, Y. Hirota, A. M. Al-amer, and N. Nishiyama, “Supporting information conversion of dimethyl ether to olefins over nanosized mordenite fabricated by a combined high-energy ball milling with recrystallization,” Industrial & Engineering Chemistry Research, vol. 56, no. 15, Mar. 2017, doi: 10.1021/ acs.iecr.6b04834.

[77]     A. Dziedzicka, B. Sulikowski, and M. R. Mikołajczyk, “Catalytic and physicochemical properties of modified natural clinoptilolite,” Catalysis Today, vol. 259, pp. 50–58, Jan. 2016, doi: 10.1016/j.cattod.2015.04.039.

[78]     A. Ates and G. Akgul, “Modification of natural zeolite with NaOH for removal of manganese in drinking water,” Powder Technology, vol. 287, pp. 285–291, Jan. 2016, doi: 10.1016/ j.powtec.2015.10.021.

[79]     A. S. Nizami, O. K. M. Ouda, M. Rehan, A. M. O. El-maghraby, J. Gardy, A. Hassanpour, S. Kumar, and I. M. I. Ismail, “The potential of Saudi Arabian natural zeolites in energy recovery technologies,” Energy, vol. 108, pp. 162–171, Aug. 2016, doi: 10.1016/j.energy. 2015.07.030.

[80]     M. Moshoeshoe, M. S. N. Tabbiruka, and V. Obuseng, “A review of the chemistry, structure, properties and applications of zeolites,” American Journal of Materials Science, vol. 7, no. 5, pp. 196–221, 2017, doi: 10.5923/j.materials.20170705.12.

[81]     Y. Sun, J. Tang, G. Li, Y. Sun, Y. hua, S. Hu, and X. Wen, “Adsorption, separation and regeneration of cation-exchanged X zeolites for LNG purification: Li+, K+, Mg2+ and Ca2+,” Microporous and Mesoporous Materials, vol. 340, Jul. 2022, Art. no. 112032, doi: 10.1016/j.micromeso.2022.112032.

[82]     A. Irawan, T. Kurniawan, N. Nurkholifah, M. Melina, A. B. D. Nandiyanto, M. A. Firdaus, H. Alwan, and Y. Bindar, “Pyrolysis of polyolefins into chemicals using low-cost natural zeolites,” Waste Biomass Valorization, vol. 14, no. 5, pp. 1705–1719, 2023, doi: 10.1007/s12649-022-01942-3.

[83]     N. E. Gordina, T. N. Borisova, K. S. Klyagina, I. A. Astrakhantseva, A. A. Ilyin, and R. N. Rumyantsev, “Investigation of NH3 desorption kinetics on the LTS and SOD zeolite membranes,” Membranes, vol. 12, no. 2, 147, 2022, doi; 10.3390/membranes12020147. 

[84]     Y. Hong, Y. Lee, P. S. Rezaei, B.S. Kim, J. Jeon, J. Jae, S. Jung, S. C. Kim, and Y. Park, “In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5,” Catalysis Today, vol. 293–294, pp. 151–158, Sep. 2017, doi; 10.1016/j.cattod.2016.11.045.

[85]     L. F. Lundegaard, I. C. Berdiell, N. Konig, N. H. Junge, P. Beato, D. Chernyshov, S. Svelle, and D. S. Wragg, “Tracking deactivation of zeolite beta with and without a detailed structure model: XRD analysis and in situ studies,” Microporous and Mesoporous Materials, vol. 366, Feb. 2024, doi: 10.1016/j.micromeso.2023.112911.

[86]     S. Karpe and G. Veser, “Coke Formation and Regeneration during Fe-ZSM-5-Catalyzed Methane Dehydro-Aromatization,” Catalysts, vol. 14, no. 5, p. 292, May 2024, doi: 10.3390/catal14050292.

[87]     M. Razzaq, M. Zeeshan, S. Qaisar, H. Iftikhar, and B. Muneer, “Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene,” Fuel, vol. 257, Dec. 2019, Art. no. 116119, doi; 10.1016/j.fuel.2019.116119.

[88]     F. I. Prihadiyono, W. W. Lestari, R. Putra, A. N. L. Aqna, I. S. Cahyani, and G. T. M. Kadja, “Heterogeneous catalyst based on nickel modified into Indonesian natural zeolite in green diesel production from crude palm oil,” International Journal of Technology, vol. 13, no. 4, pp. 931–943, 2022, doi: 10.14716/ijtech. v13i4.4695.

[89]     Q. U. Putri, Hasanudin, and A. Mara, “Comparison of acidity test method of nickel phosphate silica catalyst for production levulinic acid from glucose,” Indonesian Journal of Fundamental and Aplied Chemistry, vol. 7, no. 3, pp. 106–112, 2022, 10.24845/ ijfac.v7.i3.106.

[90]     G. Fadillah, I. Fatimah, I. Sahroni, M. M. Musawwa, T. M. I. Mahlia, and O. Muraza, “Recent progress in low-cost catalysts for pyrolysis of plastic waste to fuels,” Catalysts, vol. 11, no. 7, 837, 2021, doi: 10.3390/ catal11070837.

[91]     S. Xing, X. Liu, Y. Cui, Y. Zhao, Z. Chen, S. Xiang, and M. Han, “Elucidating the deactivation mechanism of beta zeolite catalyzed linear alkylbenzene production with oxygenated organic compound contaminated feedstocks,” RSC Advances, vol. 14, no. 13, pp. 9243–9253, 2024, doi: 10.1039/d4ra00787e.

[92]     V. Daligaux, R. Richard, and M. H. Manero, “Deactivation and regeneration of zeolite catalysts used in pyrolysis of plastic wastes—a process and analytical review,” Catalysts, vol. 11, no. 7, p. 770, Jun. 2021, doi: 10.3390/ catal11070770.

[93]     A. Ochoa, J. Bilbao, A. G. Gayubo, and P. Castano, “Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review,” Renewable and Sustainable Energy Reviews, vol. 119, Mar. 2020, Art. no. 109600, doi: 10.1016/ j.rser.2019.109600.

[94]     Z. Han, J. Li, T. Gu, B. Yan, and G. Chen, “The synergistic effects of polyvinyl chloride and biomass during combustible solid waste pyrolysis: Experimental investigation and modeling,” Energy Conversion and Management, vol. 222, Oct. 2020, Art. no. 113237, doi; 10.1016/j.enconman.2020.113237.

[95]     H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park, and Y. K. Park, “Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons,” Bioresource Technology, vol. 310, Aug. 2020, Art. no. 123473, doi; 10.1016/j.biortech.2020.123473.

[96]     R. Thilakaratne, J. P. Tessonnier, and R. C. Brown, “Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites,” Green Chemistry, vol. 18, no. 7, pp. 2231–2239, 2016, doi: 10.1039/c5gc02548f.

[97]     S. T. Okonsky, N. R. Hogan, and H. E. Toraman, “Effect of pyrolysis operating conditions on the catalytic co-pyrolysis of low-density polyethylene and polyethylene terephthalate with zeolite catalysts”, AIChE Journal, vol 70, no. 12, Aug. 2024, Art. no. e18548, doi: 10.1002/aic.18548.

[98]     H. Hassan, J. K. Lim, and B. H. Hameed, “Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite,” Bioresource Technology, vol. 284, pp. 406–414, Jul. 2019, doi; 10.1016/j.biortech.2019.03.137.

[99]     S. Shao, H. Zhang, R. Xiao, and D. Shen, “Catalytic conversion of furan to hydrocarbons using HZSM‐5: Coking behavior and kinetic modeling including coke deposition,” Energy Technology, vol. 5, no. 1, pp. 111–118, Jul. 2016, doi; 10.1002/ente.201600100.

[100]   S. Papuga, M. Djurdjevic, A. Ciccioli, and S. V. Ciprioti, “Catalytic pyrolysis of plastic waste and molecular symmetry effects: A review,” Symmetry, vol. 15, no. 1, 2023, doi: 10.3390/sym15010038.

[101]   S. Pal, A. Kumar, A. K. Sharma, P. K. Ghodke, S. Pandey, and A. Patel, “Catalytic pyrolysis of municipal plastic waste for the production of hydrocarbon fuels,” Processes, vol. 10, no. 8, 2022, Art. no. 1497, doi: 10.3390/pr10081497.

[102]   M. Senila and O. Cadar, “Modification of natural zeolites and their applications for heavy metal removal from polluted environments: Challenges, recent advances, and perspectives,” Heliyon, vol. 10, no. 3, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25303.

[103]   A. M. G. Aguilar, V. P. Garcia, and J. M. R. Avila, “A thermo-catalytic pyrolysis of polystyrene waste review: A systematic, statistical, and bibliometric approach,” Polymers, vol. 15, no. 6, 2023, doi: 10.3390/ polym15061582.

[104]   S. T. Okonsky, J. V. J. Krishna, and H. E. Toraman, “Catalytic co-pyrolysis of LDPE and PET with HZSM-5, H-Beta, and HY: experiments and kinetic modelling,” Reaction Chemistry & Engineering, vol. 7, no. 2175–2191, pp. 1–16, 2022, doi: DOI doi: 10.1039/D2RE00144F.

[105]   H. Wang and S. C. E. Tsang, “Recent advances in polyolefin plastic waste upcycling via mild heterogeneous catalysis route from catalyst development to process design,” Cell Reports Physical Science, vol. 5, no. 7, 2024, doi: 10.1016/j.xcrp.2024.102075.

[106]   J. Zhang, M. Ma, Z. Chen, X. Zhang, H. Yang, X. Wang, H. Feng, J. Yu, and S. Gao, “Production of monocyclic aromatics and light olefins through ex-situ catalytic pyrolysis of low-density polyethylene over Ga/P/ZSM-5 catalyst,” Journal of The Energy Institute, vol. 108, Jun. 2023, Art. no. 101235, doi: 10.1016/j.joei.2023.101235.

[107]   X. Xue, Z. Pan, C. Zhang, D. Wang, Y. Xie, and R. Zhang, “Segmented catalytic co-pyrolysis of biomass and high-density polyethylene for aromatics production with MgCl2 and HZSM-5,” Journal of Analytical and Applied Pyrolysis, vol. 134, pp. 209–217, Sep. 2018, doi: 10.1016/j.jaap.2018.06.010.

[108]   S. Zhong, B. Zhang, C. Liu, and A. S. Aldeen, “Mechanism of synergistic effects and kinetics analysis in catalytic co-pyrolysis of water hyacinth and HDPE,” Energy Conversion and Management, vol. 228, Jan. 2021, Art. no. 113717, doi: 10.1016/j.enconman.2020.113717.

[109]   M. F. P. Sánchez, M. Calero, G. Blazquez, R. R. Solis, M. J. M. Batista, and M. Á. M. Lara, “Thermal and catalytic pyrolysis of a real mixture of post-consumer plastic waste: An analysis of the gasoline-range product,” Process Safety and Environmental Protection, vol. 168, pp. 1201–1211, Dec. 2022, doi: 10.1016/j.psep.2022.11.009.

[110]   X. Zhang, H. Lei, G. Yadavalli, L. Zhu, Y. Wei, and Y. Liu, “Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5,” Fuel, vol. 144, pp. 33–42, 2015, doi: 10.1016/ j.fuel.2014.12.013.

[111]   T. C. Hoff, R. Tilakaratne, D. W. Garner, R. C. Brown, and J. P. Tessonnier, Thermal stability of aluminum-rich ZSM-5 zeolites and consequences on aromatization reactions,” The Journal of Physical Chemistry C, vol. 120, no. 36, Aug 2016, doi: 10.1021/acs.jpcc.6b04671.

[112]   Y. Chi, J. Xue, J. Zhuo, D. Zhang, M. Liu, and Q. Yao, “Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41,” Science of the Total Environment, vol. 633, pp. 1105–1113, Aug. 2018, doi; 10.1016/j.scitotenv. 2018.03.239.

[113]   S. D. A. Sharuddin, F. Abnisa, W. M. A. W. Daud, and M. K. Atoua, “A review on pyrolysis of plastic wastes,” Energy Conversion and Management, vol. 115, pp. 308–326, May 2016, doi: 10.1016/j.enconman. 2016.02.037.

[114]   J. Zhang and F. Yan, “Pyrolysis behaviors of polyethylene terephthalate (PET): A density functional study,” International Journal of Modern Physics B, vol. 35, no. 04, 2150048, Jan. 2021, doi: 10.1142/S021797922150048X.

[115]   A. Shahi, B. Roozbehani, and M. Mirdrikvand, “Catalytic pyrolysis of waste polyethylene terephthalate granules using a Lewis-Brønsted acid sites catalyst”, Clean Technology and Environmental Policy, vol. 24, no. 3, pp. 779–787, Apr. 2022, doi: 10.1007/s10098-021-02260-3.

[116]   T. Yoshioka, G. Grause, C. Eger, W. Kaminsky, and A. Okuwaki, “Pyrolysis of poly(ethylene terephthalate) in a fluidised bed plant,” Polymer Degradation of Stability, vol. 86, no. 3, pp. 499–504, Dec. 2004, doi: 10.1016/j.polymdegradstab.2004.06.001.

[117]      N. Lal, S. Gupta, H. Goyal, and P. Mondal, “Energy generation from waste packaging plastic via thermo-catalytic pyrolysis using catalysts produced from spent aluminum hydroxide nanoparticles,” Clean Technology and Environmental Policy, vol. 26, no. 3, pp. 729–740, Nov. 2024, doi: 10.1007/s10098-023-02644-7.

Full Text: PDF

DOI: 10.14416/j.asep.2025.01.001

Refbacks

  • There are currently no refbacks.