Page Header

Biochemical Characterization of Mannanase from Newly Isolated Acinetobacter sp. KUB-ST1-1 and its Hydrolysate Containing Mannooligosaccharides: Potential as Applied Prebiotic for Pet Food

Wilawan Sintuprapa, Aonchuma Alaiphol, Sunee Nitisinprasert, Zhemin Zhou, Somporn Moonmangmee

Abstract


The β-mannanase enzyme derived from isolated Acinetobacter sp. KUB-ST1-1 was studied for its potential for mannooligosaccharide production. Extracellular mannanase from Acinetobacter sp. KUB-ST1-1, cultured in nutrient broth with 0.5% (w/v) locust bean gum, was purified using ultrafiltration, anion exchange chromatography, and cation exchange chromatography. The enzyme, with a molecular weight of 57 kDa, had high activity in a 50 mM phosphate buffer at pH 6.0 and was stable from pH 4.0 to 7.0. It had high-temperature stability at 40 °C and 50 °C for up to 18 h. This enzyme was highly active toward konjac and galactomannan, especially with locust bean gum and copra meal. The hydrolysis products consisted mainly of the 2 and 3 units of mannooligosaccharide. The mannooligosaccharide exhibited prebiotic properties by promoting increased growth of some beneficial lactic acid bacteria. Furthermore, the defatted copra meal hydrolysate had considerable resistance to pepsin, trypsin, and bile salts under simulated gastrointestinal conditions for dogs. These characteristics highlighted the enzyme's excellent properties and suggested its potential as a promising candidate for applications in the food and bio-industries, particularly in pet food production.

Keywords



[1]    Foreign Agricultural Service, “Production-Thailand: top produced commodities,” 2024. [Online]. Available: https://fas.usda.gov

[2]    B. Sundu, A. Kumar, and J. Dingle, “Feeding value of copra meal for broilers,” World’s Poultry Science Journal, vol. 65, pp. 481–492, Sep. 2009, doi: 10.1017/S0043933909000348.

[3]    K. E. B. Knudsen, “Carbohydrate and lignin contents of plant materials used in animal feeding,” Animal Feed Science and Technology, vol. 67, pp. 319–338, Aug. 1997, doi: 10.1016/S0377-8401(97)00009-6.

[4]    A. Devi, S. S. Diarra, and S. H. Mae, “Feeding value of copra meal in corn-animal protein-based diets and enzyme supplementation for egg-type birds: growth performance egg, production and fatty acid profile,” Journal of Poultry Research, vol. 17, pp. 41–49, Oct. 2020, doi: 10. 34233/jpr.800462.

[5]    H. Harlina, A. Hamdillah, K. Kamaruddin, and S. Aslamyah, “Digestibility of fermented copra meal for fish as a plant protein source in the saline tilapia (Oreochromis niloticus) seeds,” IOP Conference Series: Earth and Environmental Science, vol. 763, 2021, Art. no. 012033, doi: 10.1088/1755-1315/763/1/012033.

[6]    J. C. Jang, D. H. Kim, J. S. Hong, Y. D. Jang and Y. Y. Kim, “Effects of copra meal inclusion level in growing-finishing pig diets containing β-mannanase on growth performance, apparent total tract digestibility, blood urea nitrogen concentrations and pork quality,” Animals, vol. 10, p. 1840, Oct. 2020, doi: 10.3390/
ani10101840.

[7]    H. J. Kim, S. O. Nam, J. H. Jeong, L. H. Fang, H. B. Yoo, S. H. Yoo, J. S. Hong, S. W. Son, S. H. Ha, and Y. Y. Kim, “Various levels of copra meal supplementation with β-mannanase on growth performance, blood profile, nutrient digestibility, pork quality and economical analysis in growing-finishing pigs,” Journal of Animal Science and Technology, vol. 59, p. 19, Jul. 2017, doi: 10.1186/s40781-017-0144-6.

[8]    J. Kraikaew, S. Morakul and S. Keawsompong, “Nutritional improvement of copra meal using mannanase and Saccharomyces cerevisiae,” 3 Biotech, vol. 10, p. 274, May. 2020, doi: 10.1007/s13205-020-02271-9.

[9]    R. E. P. Mamauaga, J. A. Ragazab, and T. Nacionales, “Fish performance, nutrient digestibilities, and hepatic and intestinal morphologies in grouper Epinephelus fuscoguttatus fed fermented copra meal,” Aquaculture Reports, vol. 14, Jul. 2019, Art. no. 100202, doi: 10.1016/j.aqrep.2019.100202.

[10]  M. Z. Hossain, J. Abe, and S. Hizukuri, “Multiple forms of β-mannanase from Bacillus sp. KK01,” Enzyme and Microbial Technology, vol. 18, pp. 95-98, Feb. 1996, doi: 10.1016/0141-0229(95)00071-2.

[11]  National Science and Technology Development Agency, “The BCG concept,” 2021. [Online]. Available: https://www.bcg.in.th

[12]  A. Yopi and A. Meryandini, “Enzymatic hydrolysis of copra meal by mannanase from Streptomyces sp. BF3.1 for the production of mannooligosaccharides,” HAYATI Journal of Biosciences, vol. 22, pp. 79–86, Apr. 2015, doi: 10.4308/hjb.22.2.79.

[13]  S. T. Chantorna, N. Pongsapipatana, S. Keawsompong, A. Ingkakul, D. Haltrich and S. Nitisinprasert, Characterization of mannanase S1 from Klebsiella oxytoca KUB-CW2-3 and its application in copra mannan hydrolysis,” ScienceAsia, vol. 39, pp. 236–245, Mar. 2013, doi: 10.2306/scienceasia1513-1874.2013.39.236.

[14]  A. Ghosh, A. K. Verma, J. R, Tingirikari, R. Shukla, and A. Goyal, “Recovery and purification of oligosaccharides from copra meal by recombinant endo-β-mannanase and deciphering molecular mechanism involved and its role as potent therapeutic agent,” Molecular Biotechnology, vol. 57, pp. 111–127, Sep 2015, doi: 10.1007/s12033-014-9807-4.

[15]  N. Hlalukana, M. Magengelele, S. Malgas, and B. I. Pletschke, “Enzymatic conversion of mannan-rich plant waste biomass into prebiotic mannooligosaccharides,” Foods, vol. 10, 2010, Aug. 2021, doi: 10.3390/foods10092010.

[16]  P. Pangsri, Y. Piwpankaew, A. Ingkakul, S. Nitisinprasert and S. Keawsompong, “Characterization of mannanase from Bacillus circulans NT 6.7 and its application in mannooligosaccharides preparation as prebiotic,” SpringerPlus, vol. 4, p. 771, 2015, doi: 10.1186/s40064-015-1565-7.

[17]  S. Titapoka, S. Keawsompong, D. Haltrich and S. Nitisinprasert, “Selection and characterization of mannanase-producing bacteria useful for the formation of prebiotic manno-oligosaccharides from copra meal,” World Journal of Microbiology and Biotechnology, vol. 24, pp. 1425–1433, Nov. 2008, doi: 10.1007/s11274-007-9627-9.

[18]  U. K. Jana, R. K. Suryawanshi, B. P. Prajapati, and N. Kango, “Prebiotic mannooligo
saccharides: synthesis, characterization and bioactive properties,” Food Chemistry, vol. 342, Nov. 2020, Art. no. 128328, doi: 10.1016/
j.foodchem.2020.128328.

[19]  R. Hirano, M. Sakanaka, K. Yoshimi, N. Sugimoto, S. Eguchi, Y. Yamauchi, M. Nara, S. Maeda, Y. Ami, A. Gotoh, T. Katayama, N. Iida, T. Kato, H. Ohno, S. Fukiya, A. Yokota, M. Nishimoto, M. Kitaoka, H. Nakai, and S. Kurihara, “Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing Clostridioides difficile,” Gut Microbes, vol. 13, Aug. 2021, Art. no. e1973835, doi: 10.1080/
19490976. 2021.1973835.

[20]  K. S. Swanson, C. M. Grieshop, E. A. Flickinger, N. R. Merchen, and G. C. Fahey, “Effects of supplemental fructooligosaccharides and mannanoligosaccharides on colonic microbial populations, immune function and fecal odor components in the canine,” Journal of Nutrition, vol. 132, pp. 1717S–1719S, Jun. 2002, doi: 10.1093/jn/132.6.1717s.

[21]  P. Pason, C. Tachaapaikoon, W. Suyama, R. Waeonukul, R. Shao, M. Wongwattanakul, T. Limpaiboon, C. Chonanant and N. Ngernyuang, “Anticancer and anti-angiogenic activities of mannooligosaccharides extracted from coconut meal on colorectal carcinoma cells in vitro,” Toxicology Reports, vol. 12, pp. 82–90, Jun. 2024, doi: 10.1016/j.toxrep.2023.12.010.

[22]  A. Monteagudo-Mera, R. A. Rastall, G. R. Gibson, D. Charalampopoulos, and A. Chatzifragkou, “Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health,” Applied Microbiology and Biotechnology, vol. 103, pp. 6463–6472, Jul. 2019, doi: 10.1007/s00253-019-09978-7.

[23]  M. P. Perini, V. Pedrinelli, P. H. Marchi, L. B. F. Henríquez, R. V. A. Zafalon, T. H. A. Vendramini, J. C. C. Balieiro, and M. A. Brunetto, “Potential effects of prebiotics on gastrointestinal and immunological modulation in the feeding of healthy dogs: A review,” Fermentation, vol. 9, p. 693, Jul. 2023, doi: 10.3390/fermentation9070693.

[24]  N. Kango, U. K. Jana, R. Choukade, and S. Nath, “Advances in prebiotic mannooligosaccharides,” Current Opinion in Food Science, vol. 47, Jun. 2022, Art. no. 100883, doi: 10.1016/j.cofs.2022.
100883.

[25]  B. W. McCleary, “Modes of action of β-mannanase enzymes of diverse origin on legume seed galactomannans,” Phytochemistry, vol. 18, pp. 757–763, Oct. 1979, doi: 0031-9422/79/
0501-0757.

[26]  S. Dhawan and J. Kaur, “Microbial mannanases: an overview of production and applications,” Critical Reviews in Biotechnology, vol. 27, pp. 197–216, Oct. 2007, doi: 10.1080/
07388550701775919.

[27]  Z. Jiang, Y. Wei, D. Li, L. Li, P. Chai, and I. Kusakabe, “High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34,” Carbohydrate Polymers, vol. 66, pp. 88–96, Oct. 2006, doi: 10.1016/j. carbpol.
2006.02.030.

[28]  G. Wu, M. M. Bryant, R. A. Voitle, and D. A. Sr. Roland, “Effects of β-mannanase in corn-soy diets on commercial leghorns in second-cycle hens,” Poultry Science, vol. 84, pp. 894–897, Jun. 2005, doi: 10.1093/ps/84.6.894.

[29]  P. S. Chauhan, N. Puri, P. Sharma, and N. Gupta, “Mannanases: microbial sources, production, properties and potential biotechnological applications,” Applied Microbiology and Biotechnology, vol. 93, pp. 1817–1830, Feb. 2012, doi: 10.1007/s00253-012-3887-5.

[30]  N. V. Kote, A. G. G. Patil, and V. H. Mulimani, “Optimization of the production of thermostable endo-β-1,4 mannanases from a newly isolated Aspergillus niger gr and Aspergillus flavus gr,” Applied Biochemistry and Biotechnology, vol. 152, pp. 213-223, Feb. 2009, doi: 10.1007/
s12010-008-8250-z.

[31]  N. Ethier, G. Talbot, and J. Sygusci, “Gene cloning, DNA sequencing, and expression of thermostable b-mannanase from Bacillus stearothermophilus,” Applied and Environmental Microbiology, vol. 64, pp. 4428–4432, Nov. 1998.

[32]  Y. Zhang, Z. Liu, and X. Chen, “Cloning and expression of a mannanase gene from Erwinia carotovora CXJZ95-198,” Annals of Microbiology, vol. 57, pp. 623–628, Oct. 2007.

[33]  J. Lv, Y. Chen, H. Pei, W. Yang, Z. Li, B. Dong, and Y. Cao, “Cloning, expression, and characterization of β-mannanase from Bacillus subtilis MAFIC-S11 in Pichia pastoris,” Applied Biochemistry and Biotechnology, vol. 169, pp. 2326–2340, Feb. 2013, doi: 10.1007/s12010-013-0156-8.

[34]  Y. Piwpankaew, S. Sakulsirirat, S. Nitisinprasert, T. H. Nguyen, D. Haltrich, and S. Keawsompong, “Cloning, secretory expression and characterization of recombinant β-mannanase from Bacillus circulans NT 6.7,” Springerplus, vol. 3, p. 430, Aug. 2014, doi: 10.1186/2193-1801-3-430.

[35]  M. E. M. Mabrouk and A. M. D. El Ahwany, “Production of β-mannanase by Bacillus amylolequifaciens 10A1 cultured on potato peels,” African Journal of Biotechnology, vol. 8, pp. 1123–1128, Apr. 2008.

[36]  H. Cai, P. Shi, H. Luo, Y. Bai, H. Huang, P. Yang, and B. Yao, “ Acidic β-mannanase from Penicillium pinophilum C1: Cloning, characterization and assessment of its potential for animal feed application,” Journal of Bioscience and Bioengineering, vol. 112, pp. 551–557, Oct. 2011, doi: 10.1016/j.jbiosc.2011.
08.018.

[37]  J. M. Song, K. W. Nam, S. G. Kang, C. G. Kim, S. T. Kwon, and Y. H. Lee, “Molecular cloning and characterization of a novel cold-active β-1,4-d-mannanase from the Antarctic springtail, Cryptopygus antarcticus,” Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, vol. 151, pp. 32–40, Sep. 2008, doi: 10.1016/j.cbpb.2008.05.005.

[38]  J. You, J. F. Liu, S. Z. Yang, and B. Z. Mu, “Low-temperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18,” Journal of Bioscience and Bioengineering, vol. 121, pp. 140–146, Jul. 2016, doi: 10.1016/j.jbiosc.2015.06.001.

[39]  N. Pongsapipatana, P. Damrongteerapap, S. Chantorn, W. Sintuprapa, S. Keawsompong, and S. Nitisinprasert, “Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters,” Enzyme and Microbial Technology, vol. 89, pp. 39-51, Mar. 2016, doi: 10.1016/
j.enzmictec.2016.03.005.

[40]  J. Zhou, R. Zhang, Y. Gao, J. Li, X. Tang, Y. Mu, F. Wang, C. Li, Y. Dong, and Z. Huang, “Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain,” Journal of Bioscience and Bioengineering, vol. 113, pp. 568–574, May 2012, doi: 10.1016/j.jbiosc.2011.
12.011.

[41]  C. Gerday, M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, S.D. Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M. A. Meuwis, and G. Feller, “Cold-adapted enzymes: From fundamentals to biotechnology,” Trends Biotechnology, vol. 13, pp. 103–107, Mar. 2000, doi: 10.1016/S0167-7799(99)01413-4.

[42]  AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed. Gaithersburg, MD: The Association of Official Analytical Chemists, 2000.

[43]  O. H. Lowry and N. J. Rosebrough, “Protein measurement with the folin phenol reagent,” The Journal of Biological Chemistry,” vol. 193, pp. 265–275, May 1951.

[44]  D. Das, R. Baruah, and A. Goyal, “A food additive with prebiotic properties of an α-D-glucan from Lactobacillus plantarum DM5,” International Journal of Biological Macromolecules, vol. 69, pp. 20–26, Aug. 2014, doi: 10.1016/j.ijbiomac.2014.05.029.

[45]  G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, pp. 426–428, Mar. 1959, doi: 10.1021/ac60147a030.

[46]  M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric method for determination of sugars and related substances,” Analytical Chemistry, vol. 28, pp. 350–356, Mar. 1956, doi: 10.1021/ac60111a017.

[47]  S. N. M. M. Ibrahim, W. Bankeere, S. Prasongsuk, H. Punnapayak, and P. Lotrakul, “Production and characterization of thermostable acidophilic b-mannanase from Aureobasidium pullulans NRRL 58524 and its potential in mannooligosaccharide production from spent coffee ground galactomannan,” 3 Biotech, vol. 12, pp. 237, Aug. 2022, doi: 10.1007/s13205-022-03301-4.

[48]  P. Ademark, A. Varga, J. Medve, V. Harjunpää, T. Drakenberg, F. Tjerneld, and H. Stålbrand, “Softwood hemicellulose-degrading enzymes from Aspergillus niger: Purification and properties of a β-mannanase,” Journal of Biotechnology, vol. 64, pp. 199–210, Aug. 1998, doi: 10.1016/S0168-1656(98)00086-8.

[49]  H. M. Ferreira and E. X. F. Filho, “Purification and characterization of a β-mannanase from Trichoderma harzianum strain T4,” Carbohydrate Polymers, vol. 57, pp. 23–29, Aug. 2004, doi: 10.1016/j.carbpol.2004.02.010.

[50]  V. Puchart, M. Vršanská, P. Svoboda, J. Pohl, Z. B. Ögel, and P. Biely, “Purification and characterization of two forms of endo-β-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749),” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1674, pp. 239–250, Nov. 2004, doi: 10.1016/j.bbagen.2004.06.022.

[51]  M. M. Mudau and M. E. Setati, “Partial purification and characterization of endo-β-1,4- mannanases from Scopulariopsis candida strains isolated from solar salterns,” African Journal of Biotechnology, vol. 7, pp. 2279–2285, Jul. 2008.

[52]  M. R. S. Chandra, Y. S. Lee, I. H. Park, Y. Zhou, K. K. Kim, and Y. L. Choi, “Isolation, purification and characterization of a thermostable β-mannanase from Paenibacillus sp. DZ3,” Journal of the Korean Society for Applied Biological Chemistry, vol. 54, pp. 325–331, Jun. 2011.

[53]  J. Zhang, Z. He, and K. Hu, “Purification and characterization of β-mannanase from Bacillus licheniformis for industrial use,” Biotechnology Letters, vol. 22, pp. 1375–1378, Sep. 2000.

[54]  N. Takeda, K. Hirasawa, K. Uchimura, Y. Nogi, Y. Hatada, R. Usami, Y. Yoshida, W. D. Grant, S. Ito and K. Horikoshi, “Purification and enzymatic properties of a highly alkaline mannanase from alkaliphilic Bacillus sp. strain JAMB-750,” Journal of Biological Macromolecules, vol. 4, pp. 67–74, Jun. 2004.

[55]  Y. Ma, Y. Xue, Y. Dou, Z. Xu, W. Tao and P. Zhou, “Characterization and gene cloning of a novel b-mannanase from alkaliphilic Bacillus sp. N16-5,” Extremophiles, vol. 8, pp. 447–454, Aug. 2004, doi: 10.1007/s00792-004-0405-4.

[56]  M. M. Zakaria, S. Yamamoto and T. Yagi, “Purification and characterization of an endo-1,4-β-mannanase from Bacillus subtilis KU-1,” FEMS Microbiology Letters, vol. 158, pp. 25–31, 1998, doi: 10.1111/J.15746968.1998.TB12795.X.

[57]  D. Zhao, X. Zhang, Y Wang, J. Na, W. Ping, and J. Ge, “Purification, biochemical and secondary structural characterisation of β-mannanase from Lactobacillus casei HDS-01 and juice clarification potential,” International Journal of Biological Macromolecules, vol. 154, pp. 826–834, Jul. 2020, doi: 10.1016/j.ijbiomac.2020.03.157.

[58]  R. Bhaturiwala, M. Bagban, T. A. Singh, and H. A. Modi, “Partial purification and application of β-mannanase for the preparation of low molecular weight galacto and glucomannan,” Biocatalysis and Agricultural Biotechnology, vol. 36, Art. no. 102155, Sep. 2021, doi: 10.1016/j.bcab.2021.102155.

[59]  T. Araki, Y. Tamaru, and T. Morishita, “β-1,4-mannanases from marine bacteria, Vibrio spp. MA-129 and MA-138,” Journal of General and Applied Microbiology, vol. 38, pp. 343–351, 1992, doi: 10.2323/jgam.38.343.

[60]  W. Seesom, P. Thongket, T. Yamamoto, S. Takenaka, T. Sakamoto, and W. Sukhumsirichart, “Purification, characterization, and overexpression of an endo-1, 4-b-mannanase from thermotolerant Bacillus sp. SWU60,” World Journal of Microbiology and Biotechnology, vol. 33, p. 53, Feb. 2017, doi: 10.1007/s11274-017-2224-7.

[61]  M. Yang, J. Cai, C. Wang, X. D, and J. Lin, “Characterization of endo-b-mannanase from Enterobacter ludwigii MY271 and application in pulp industry,” Bioprocess and Biosystems Engineering, vol. 40, pp. 35–43, Aug. 2017, doi: 10.1007/s00449-016-1672-z.

[62]  S. Dhawan, “Purification of a thermostable β-mannanase from Paenibacillus thiaminolyticus - characterization and its potential use as a detergent additive,” Journal of Pure and Applied Microbiology, vol. 15, pp. 368–381, Feb. 2021, doi: 10.22207/JPAM.15.1.31.

[63]  S. Singh, G. Singh, M. Khatri, A. Kaur, and S. K. Ary, “ Thermo and alkali stable β-mannanase: Characterization and application for removal of food (mannans based) stain,” International Journal of Biological Macromolecules, vol 134, pp. 536–546, May. 2019, doi: 10.1016/j.
ijbiomac.2019.05.067.

[64]  L. J. Yin, H. M. Tai and S. T. Jiang, “Characterization of mannanase from a novel mannanase-producing bacterium,” Journal of Agricultural and Food Chemistry, vol. 60, pp. 6425-6431, Jun. 2012, doi: 10.1021/jf301944e.

[65]  L. Cheng, S. Duan, X. Feng, K. Zheng, Q. Yang and Z. Liu, “Purification and characterization of a thermostable

Full Text: PDF

DOI: 10.14416/j.asep.2024.12.001

Refbacks

  • There are currently no refbacks.