Design and Development of g-C3N4/ZnO/CdS Ternary Photocatalyst for the Removal of Environmentally Hazardous Organic Dyes under Visible Light
Abstract
Keywords
[1] C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases, vol. 2, pp. 17–71, 2007, doi: 10.1116/1.2815690.
[2] P. Su, H. Liu, and Z. Jin, “Hierarchical Co3(PO4)2/CuI/g-C n H2 n-2 S-Scheme heterojunction for efficient photocatalytic hydrogen evolution,” Inorganic Chemistry, vol. 60, pp. 19402–19413, 2021, doi: 10.1021/acs.inorgchem.1c03223.
[3] D. Dutta, S. Arya, and S. Kumar, “Industrial wastewater treatment: Current trends, bottlenecks, and best practices,” Chemosphere, vol. 285, 2021, Art. no. 131245, doi: 10.1016/ j.chemosphere.2021.131245.
[4] A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, and A. Rouhi, “Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?,” Journal of Colloids and Interface Science, vol. 580, pp. 503–514, 2020, doi: 10.1016/j.jcis. 2020.07.047.
[5] T. Xiao, Z. Tang, Y. Yang, Y. L. Tang, Y. Zhou and Z. Zou, “In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics,” Applied Catalysis B: Environmental, vol. 220, pp. 417–428, 2018, doi: 10.1016/ j.apcatb.2017.08.070.
[6] A. B. Djurišić, Y. He, and A. M. Ng, “Visible-light photocatalysts: Prospects and challenges,” Applied Materials, vol. 8, 2020, Art. no. 030903, doi: 10.1063/1.5140497.
[7] M. H. Huang, and M. Madasu, “Facet-dependent and interfacial plane-related photocatalytic behaviors of semiconductor nanocrystals and heterostructures”, Nano Today, vol. 28, 2019, Art. no. 100768, doi: 10.1016/j.nantod.2019.100768.
[8] Y. Bai, Y. Zhou, J. Zhang, X. Chen, Y. Zhang, J. Liu, and C. Li, “Homophase junction for promoting spatial charge separation in photocatalytic water splitting,” ACS Catalysis, vol. 9, pp. 3242–3252, 2019, doi: 10.1021/ acscatal.8b05050.
[9] L. Jiang, X. Yuan, G. Zeng, J. Liang, Z. Wu, and H. Wang, “Construction of an all-solid-state Z-scheme photocatalyst based on graphite carbon nitride and its enhancement to catalytic activity,” Environmental Science: Nano, vol. 5, pp. 599–615, 2018, doi: 10.1039/C7EN01031A.
[10] E. A. Abdullah, “Band edge positions as a key parameter to a systematic design of heterogeneous photocatalyst”, European Journal of Chemistry, vol. 10, pp. 82–94, 2019, doi: 10.5155/ eurjchem.10.1.82-94.1809.
[11] X. Jia, X. Q. Han, M. Zheng, and H. Bi, “One pot milling route to fabricate step-scheme AgI/I-BiOAc photocatalyst: Energy band structure optimized by the formation of solid solution,” Applied Surface Sciences, vol. 489, pp. 409–419, 2019, doi: 10.1016/j.apsusc.2019. 05.361.
[12] T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, and J. Yu, “Review on metal sulphide-based z-scheme photocatalysts,” ChemCatChem, vol. 11, pp. 1394–1411, 2019, doi: 10.1002/cctc.201802024.
[13] R. Wang, J. Shen, W. Zhang, Q. Liu, M. Zhang, H. T. Zulfiqar, and H. Tang. “Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation,” Ceramic International, vol. 46, pp. 23–30, 2020, doi: 10.1016/j.ceramint.2019.08.226.
[14] C. Zhang, M. Zhang, Y. Li, and D. Shuai, “Visible-light-driven photocatalytic disinfection of human adenovirus by a novel heterostructure of oxygen-doped graphitic carbon nitride and hydrothermal carbonation carbon,” Applied Catalysis B: Environmental, vol. 248, pp. 11–21, 2019, doi: 10.1016/j.apcatb.2019.02.009.
[15] Y. Boyjoo, H. Sun, J. Liu, V. K. Pareek, and S. Wang, “A review on photocatalysis for air treatment: From catalyst development to reactor design,” Chemical Engineering Journal, vol. 310, pp. 537–559, 2017, doi: 10.1016/j.cej. 2016.06.090.
[16] Q. Xiang, B. Cheng, and J. Yu, “Graphene-based photocatalysts for solar-fuel generation,” Angewandte Chemie International Edition, vol. 54, pp. 11350–11366, 2015, doi: 10.1002/anie. 201411096.
[17] L. Marzo, S. K. Pagire, O. Reiser, and B. König, “Visible-light photocatalysis: Does it make a difference in organic synthesis?,” Angewandte Chemie International Edition, vol. 57, pp. 10034–10072, 2018, doi: 10.1002/anie.201709766.
[18] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, and J. M. Carlsson, “Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts,” Journal of Materials Chemistry, vol. 18, pp. 4893–4908, 2008, doi: 10.1039/B800274F.
[19] Q. Guo, Y. Xie, X. Wang, S. Lv, T. Hou, and X. Liu, “Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures,” Chemical Physics Letters, vol. 380, pp. 84–87, 2003, doi: 10.1016/j.cplett.2003.09.009.
[20] X. Chen, L. Zhang, B. Zhang, X. Guo, and X. Mu, “Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water,” Scientific Reports, vol. 6, 2016, Art. no. 28558, doi: 10.1038/srep28558.
[21] G. Mamba, and A. K. Mishra, “Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation,” Applied Catalysis B: Environmental, vol. 198, pp. 347–377, 2016, doi: 10.1016/ j.apcatb.2016.05.052.
[22] I. Medina-Ramírez, A. Hernández-Ramírez, and M. L. Maya-Trevino, “Synthesis methods for photocatalytic materials,” Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications, vol. 5, pp. 69–102, 2015, doi: 10.1007/978-3-319-10999-2_3.
[23] Z. Fona, Irwan, A. Setawan, and Adriana, “Review on advance catalyst for biomass gasification,” Applied Science and Engineering Progress, vol. 17, 2024, Art. no. 7295, doi: 10.14416/j.asep.2024.01.001.
[24] M. Omar, S. Omar, A. Eltaweil, M. Gehan, and F. Nour, “Engineering of ternary photocatalysts nanocomposites based NiS/ZrO2/CdSfor boosting of photocatalytic degradation of organic pollutants,” Surfaces and Interfaces, vol. 43, 2023, Art. No. 103606, doi: 10.1016/ j.surfin. 2023.103606.
[25] Y. Bai, S. Zhang, S. Feng, M. Zho, and S. Ma, “The first ternary Nd-MOF/GO/Fe3O4 nanocomposite exhibiting an excellent photocatalytic performance for dye degradation” Dalton Transactions, vol. 49, pp. 10745–10754, 2020, doi: 10.1039/D0DT01648A.
[26] G. Prasanth, G. M. Madhu, and N. Kottam, “Combustion assisted synthesis of cuo nanoparticles and structure-property evaluation in nano-cuo polymer composites,” Applied Science and Engineering Progress, vol. 17, 2024, Art. no. 7259, doi: 10.14416/j.asep. 2023.11.009.
[27] C. L. Perrin, “Linear or nonlinear least-squares analysis of kinetic data?,” Journal of Chemical Education, vol. 94, pp. 669–672, 2017, doi: 10.1021/acs.jchemed.6b00629.
[28] S. P. Smrithi, N. Kottam, A. Narula, G. M. Madhu, M. Riyaz, and R. Agilan, “Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation,” Journal of Colloids and Interface Science, vol. 627, pp. 956–968, 2022, doi: 10.1016/j.jcis.2022.07.100.
[29] S. P. Smrithi, N. Kottam, and B. R. Vergis, “Heteroatom modified hybrid carbon quantum dots derived from Cucurbita pepo for the visible light driven photocatalytic dye degradation,” Topics in Catalysis, vol. 20, pp. 1–12, 2022, doi: 10.1007/s11244-022-01581-x.
[30] P. B. Raja, K. R. Munuswamy, V. Perumal, and M. N. M. Ibrahim, “Nanobioremediations: fundamentals and applications,” micro and nanotechnologies, vol.5, pp. 57–83, 2022, doi: 10.1016/B978-0-12-823962-9.00037-4.
[31] S. P. Smrithi, N. Kottam, V. Arpitha, A. Narula, G. N. Anilkumar, and K. R. V. Subrahmanian, “Tungsten oxide modified with carbon nanodots: Integrating adsorptive and photocatalytic functionalities for water remediation,” Journal of Science: Advanced Materials and Devices, vol. 5, pp. 73–83, 2020, doi: 10.1016/j.jsamd. 2020.02.005.
[32] S. Sharieff, S. Veluturla, N. Kottam, S. P. Smrithi, and R. Singhvi, “Esterification of levulinic acid to butyl levulinate over TiO2/WO3/SO4: optimization and kinetic study,” Biomass Conversion and Biorefineries, vol. 1, pp. 1–15, 2023, doi: 10.1007/s13399-023-04016-z.
[33] K. Gurushantha, N. Kottam, S. P. Smrithi, M. S. Dharmaprakash, K. Keshavamurthy, S. Meena, and N. Srinatha, “Visible light active WO3/TiO2 heterojunction nanomaterials for electrochemical sensor, capacitance and photocatalytic applications,” Catalysis Letters, vol. 154, pp. 982–993, 2023, doi: 10.1007/s10562-023-04362-7.
[34] B. Archana, N. Kottam, S. P. Smrithi, and K. B. C. Sekhar, “Fabrication of 2D+1D nanoarchitecture for transition metal oxide modified CdS nanorods: A comparative study on their photocatalytic hydrogen-generation efficiency,” Nanotechnology, vol. 34, pp. 297–302, 2023, doi: 10.1088/1361-6528/acec50.
[35] B.K. Devendra, B. M. Praveen, V. S. Tripathi, G. Nagaraju, B. M. Prasanna, and M. Shashank, “Development of rhodium coatings by electrodeposition for photocatalytic dye degradation,” Vacuum, vol. 205, 2022, Art. No. 111460, doi: 10.1016/j.vacuum.2022.111460.
[36] T. Song, C. Xie, K. Matras-Postolek, and P. Yang, “2D Layered g-C3N4/WO3/WS2 S-Scheme Heterojunctions with Enhanced Photochemical Performance,” Journal of Physical Chemistry C, vol. 125, pp. 19382–19393, 2021, doi: 10.1021/acs.jpcc.1c06753.
[37] E. M. Hashem, M. A. Hamza, E. Shazly, S. A. Rahman, E. M. Tanany, R. T. Mohamed, and N. K. Allam, “Novel Z-Scheme/Type-II CdS@ZnO/g-C3N4 ternary nanocomposites for the durable photodegradation of organics: Kinetic and Mechanic insights,” Chemosphere, vol. 277, 2021, Art. No. 128730, doi: 10.1016/j.chemosphere.2020.128730.
[38] Y. Xu and W. Zhang, “CdS/g-C3N4 hybrids with improved photostability and visible light photocatalytic activity,” European Journal of Inorganic Chemistry, vol. 10, pp. 1744–1755, 2015, doi: 10.1002/ejic.201403193.
[39] K. A. Adagoke, M. Iqbal, H. Louis, and O. S. Bello, “Synthesis, characterization application of CdS/ZnO nanorod heterostructure for the photodegradation of Rhodamine B dye”. Material Science and Energy Technology, vol. 2, pp. 329–336, 2019, doi: 10.1016/j.mset. 2019.02.008.
[40] G. Prashanth, G. M. Madhu, N. Kottam, and S. P. Smrithi, “Carica-Papaya derived Carbon nanodots for the detection of Fe(III) ions,” Applied Science and Engineering Progress, vol. 18, Art. No. 7571, 2025. doi: 10.14416/j.asep. 2024.09.005.DOI: 10.14416/j.asep.2024.11.008
Refbacks
- There are currently no refbacks.