Progressions in Modified Graphite Electrodes with Green Nanostructured Materials for Low Cost and Sustainable Electrochemical Detection of Environmental Contaminants
Abstract
[1] C. S. Ong, Q. H. Ng, and S. C. Low, “Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals,” Monatshefte fur Chemie-Chemical Monthly, vol. 152, pp. 705–723, 2021, doi: 10.1007/s00706-021-02802-x.
[2] S. Sawan, R. Maalouf, A. Errachid, and N. Jaffrezic-Renault, “Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review,” Trends in Analytical Chemistry, vol. 131, 2020, Art. no. 116014, doi: 10.1016/j.trac.2020.116014.
[3] Annu, S. Sharma, R. Jain, and A. N. Raja, “Review—Pencil graphite electrode: an emerging sensing material,” Journal of The Electrochemical Society, vol. 167, 2020, Art. no. 037501, doi: 10.1149/2.0012003JES.
[4] S. Tajik, H. Beitollahi, F. G. Nejadb, M. Safaeib, K. Zhangc, Q. V. Le, R.S. Varma, H. W. Jangand and M. Shokouhimehr, “Developments and applications of nanomaterial-based carbon paste electrodes,” RSC Advances, vol. 10, no. 36, pp. 21561–21581, 2020, doi: 10.1039/D0RA03672B.
[5] B. Mostafiz, S. A. Bigdeli, K. Banan, H. Afsharara, D. Hatamabadi, P. Mousavi, C. M. Hussain, R. Keçili, and F. Ghorbani-Bidkorbeh, “Molecularly imprinted polymer-carbon paste electrode (MIP-CPE)-based sensors for the sensitive detection of organic and inorganic environmental pollutants: A review,” Trends in Environmental Analytical Chemistry, vol. 32, 2021, Art. no. e00144, doi: 10.1016/j.teac.2021. e00144.
[6] A. Rubino and R. Queirós, “Electrochemical determination of heavy metal ions applying screen-printed electrodes based sensors. A review on water and environmental samples analysis,” Talanta Open, vol. 7, 2023, Art. no. 100203, doi: 10.1016/j.talo.2023.100203.
[7] K. Xhanari and M. Finšgar, “Recent advances in the modification of electrodes for trace metal analysis: A review,” Analyst, vol. 148, pp. 5805–5821, 2023, doi: 10.1039/d3an01252b.
[8] C. V. Raju, C. H. Cho, G. M. Rani, V. Manju, R. Umapathi, Y. S. Huh, and J. P. Park, “Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions,” Coordination Chemistry Reviews, vol. 476, 2023, Art. no. 214920, doi: 10.1016/j.ccr.2022.214920.
[9] R. Manikandan, J. H. Yoon, and S. C. Chang, “Emerging trends in nanostructured materials-coated screen printed electrodes for the electrochemical detection of hazardous heavy metals in environmental matrices,” Chemosphere, vol. 344, 2023, Art. no. 140231, doi: 10.1016/j.chemosphere.2023.140231.
[10] K. Torres-Rivero, L. Torralba-Cadena, A. Espriu-Gascon, I. Casas, J. Bastos-Arrieta, and A. Florido, “Strategies for surface modification with Ag-shaped nanoparticles: Electrocatalytic enhancement of screen-printed electrodes for the detection of heavy metals,” Sensors, vol. 19, 2019, Art. no. 4249, doi: 10.3390/s19194249.
[11] T. B. G. Lopez, S. T. Palisoc, and M. T. Natividad, “Highly sensitive [Ru(bpy)3]2 +/Nafion® modified indium tin oxide-based sensor for heavy metal detection,” Sensing and Bio-Sensing Research, vol. 15, pp. 34–40, 2017, doi: 10.1016/j.sbsr.2017.07.001.
[12] N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, and N. Rodthongkum, “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,” Sensors and Actuators B: Chemicals, vol. 207, pp. 526–534, 2015, doi: 10.1016/j.snb.2014.10.126.
[13] H. Cui and Q. Li, “Multi-walled carbon nanotubes modified screen-printed electrode coated bismuth oxide nanoparticle for rapid detection of Cd(II) and Pb(II),” International Journal of Electrochemical Sciences, vol. 14, pp. 6154–6167, 2019, doi: 10.20964/2019.07.15.
[14] L. S. Guenang, P. Gupta, V. C. Basseto, M. Jovic, E. Ymélé, A. Lesch, H. Girault, and I. K. Tonlé, “Oxygen plasma/bismuth modified inkjet printed graphene electrode for the sensitive simultaneous detection of lead and cadmium,” American Journal of Analytical Chemistry, vol. 11, no. 01, pp. 1–14, 2020, doi.org/10.4236/ajac. 2020.111001.
[15] B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, and P. Chen, “Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,” Sensors and Actuators B: Chemical, vol. 259, pp. 364–371, 2018, doi: 10.1016/j.snb.2017.12.083.
[16] C. T. Fakude, O. A. Arotiba, and N. Mabuba, “Electrochemical aptasensing of cadmium (II) on a carbon black-gold nano-platform,” Journal of Electroanalytical Chemistry, vol. 858, 2020, Art. no. 113796, doi: 10.1016/j.jelechem.2019. 113796.
[17] Y. GadelHak, S. H. M. Hafez, H. F. M. Mohamed, E. E. Abdel-Hady, and R. Mahmoud, “Nanomaterials-modified disposable electrodes and portable electrochemical systems for heavy metals detection in wastewater streams: A review,” Microchemical Journal, vol. 193, 2023, Art. no. 109043, doi: 10.1016/j.microc.2023.109043.
[18] P. K. Kalambate, Z. Rao, J. Wu, Y. Shen, R. Boddula, and Y. Huang, “Electrochemical (bio) sensors go green,” Biosensors and Bioelectronics, vol. 163, 2020, Art. no. 112270, doi: 10.1016/j.bios.2020.112270.
[19] V. Bressi, A. Ferlazzo, D. Iannazzo, and C. Espro, “Graphene quantum dots by eco-friendly green synthesis for electrochemical sensing: Recent advances and future perspectives,” Nanomaterials, vol. 11, 2021, Art. no. 1120, doi: 10.3390/nano11051120.
[20] K. K. Brar, S. Magdouli, A. Othmani, J. Ghanei, V. Narisetty, R. Sindhu, P. Binod, A. Pugazhendhi, M. K. Awasthi, and A. Pandey, “Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review,” Environmental Research, vol. 207, 2022, Art. no. 112202, doi: 10.1016/j.envres.2021.112202.
[21] S. K. Tiwari, M. Bystrzejewski, A. De Adhikari, A. Huczko, and N. Wang, “Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications,” Progress in Energy and Combustion Science, vol. 92, 2022, Art. no. 101023, doi: 10.1016/j.pecs.2022.101023.
[22] M. S. Samuel, M. Ravikumar, A. John J., E. Selvarajan, H. Patel,P. S. Chander,J. Soundarya, S. Vuppala, R. Balaji, and N. Chandrasekar, “A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications,” Catalysts, vol. 12, 2022, Art. no. 459, doi: 10.3390/catal12050459.
[23] M. Sriariyanun and D. Babu, “From waste to wealth: Challenges in producing value-added biochemicals from lignocellulose biorefinery,” Journal of Applied Science and Emerging Technology, vol. 22, no. 3, 2023, Art. no. e900001, doi: 10.14416/jaset.kmutnb.2023.03.001.
[24] S. Areeya, E. J. Panakkal, M. Sriariyanun, T. Kangsadan, A. Tawai, S. Amornraksa, U. W. Hartley, and P. Yasurin, “A review on chemical pretreatment of lignocellulosic biomass for the production of bioproducts: Mechanisms challenges and applications,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6767, doi: 10.14416/j.asep.2023.02.008.
[25] D. Jose, N. Kitiborwornkul, M. Sriariyanun, and K. Keerthi, “A review on chemical pretreatment methods of lignocellulosic biomass: Recent advances and progress,” Applied Science and Engineering Progress, vol. 15, no. 4, 2022, Art. no. 6210, doi: 10.14416/j.asep.2022.08.001.
[26] M. P. Gundupalli and M. Sriariyanun, “Recent trends and updates for chemical pretreatment of lignocellulosic biomass,” Applied Science and Engineering Progress, vol. 16, 2022, Art. no. 5842, doi: 10.14416/j.asep.2022.03.002.
[27] M. A. Khan, S. H. Lee, and M. Sriariyanun, “Deep eutectic solvent as a tailor-made chemical for pretreatment in a lignocellulose biorefinery,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7388, doi: 10.14416/ j.asep.2024.03.003.
[28] D. Jose, A. Tawai, D. Divakaran, D. Bhattacharyya, P. Venkatachalam, P. Tantayotai, and M. Sriariyanun, “Integration of deep eutectic solvent in biorefining process of lignocellulosic biomass valorization,” Bioresource Technology Reports, vol. 21, 2023, Art. no. 101365, doi: 10.1016/j.biteb.2023.101365.
[29] T. Phusantisampan, N. Wisuthiphaet, and N. Kitiborwornkul, “Pretreatment of lignocellulosic biomass using deep eutectic solvents for biorefining processes,” The Journal of KMUTNB, vol. 35, no. 2, pp. 1–15, 2025, doi: 10.14416/ j.kmutnb.2024.07.014.DOI: 10.14416/j.asep.2024.10.006
Refbacks
- There are currently no refbacks.