Page Header

Optimization of Microcrystalline Cellulose Production from Brewer’s Spent Grain by Acid Hydrolysis

Nutcha Kongkum, Vanarat Phakeenuya, Sasithorn Kongruang

Abstract


Brewer’s spent grain (BSG) is the main insoluble solid by-product of the brewing industry. To add value to this non-wood material, microcrystalline cellulose (MCC) was prepared from BSG by alkaline pretreatment, bleaching, and subsequent acid hydrolysis to produce non-wood MCC. This study aimed to optimize MCC production using a statistical design (Box-Behnken) with three factors at three levels: acid concentration (0.5–1.5 M), hydrolysis time (70–90 min) and hydrolysis temperature (55–65 °C), to achieve the maximum yield and crystallinity of MCC derived from BSG. Results from 17 experimental runs revealed that the hydrolysis condition of 0.63 M HCl for 70 min at 61 °C yielded the highest output of 15% with a crystallinity index of 60%. The chemical structures and characteristics of MCC derived from BSG were verified by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction analysis (XRD). FT-IR analysis showed that the major wavenumbers of lignin and hemicellulose after the chemical processes (1500 cm–1 and 1735 cm–1) decreased by 21.40% and 4.60%, respectively. The XRD chromatogram revealed that the XRD characteristic peaks were sharper after the chemical treatments, indicating an increase in cellulose crystallinity due to removing lignin and hemicellulose. The crystallinity index of MCC derived from BSG ranged from 55–64%, which is comparable in quality to commercial pharmaceutical MCC, Avicel® PH-101 (67.37%). These results demonstrated that MCC from BSG was successfully prepared by acid hydrolysis under optimized conditions. BSG proved a viable non-wood source for preparing MCC for application in the pharmaceutical and nutraceutical industries.

Keywords



[1]    X. Shao, J. Wang, Z. Liu, N. Hu, M. Liu, and Y. Xu, “Preparation and characterization of porous microcrystalline cellulose from corncob,” Industrial Crops and Products, vol. 151, Sep. 2020, Art. no. 112457, doi: 10.1016/j.indcrop. 2020.112457.

[2]    T. Zhao, Z. Chen, X. Lin, Z. Ren, B. Li, and Y. Zhang, “Preparation and characterization of microcrystalline cellulose (MCC) from tea waste,” Carbohydrate Polymers, vol. 184, pp. 164–170, Mar. 2018, doi: 10.1016/j.carbpol. 2017.12.024.

[3]    N. Y. Abu-Thabit, A. A. Judeh, A. S. Hakeem, A. Ul-Hamid, Y. Umar, and A. Ahmad, “Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.),” International Journal of Biological Macromolecules, vol. 155, pp. 730–739, Jul. 2020, doi: 10.1016/ j.ijbiomac.2020.03.255.

[4]    Y. Zhang, Y. Xu, X. Yue, L. Dai, and Y. Ni, “Isolation and characterization of microcrystalline cellulose from bamboo pulp through extremely low acid hydrolysis,” Journal of Wood Chemistry and Technology, vol. 39, no. 4, pp. 242–254, Apr. 2019, doi: 10.1080/02773813. 2019.1566365.

[5]    M. Husin, A. R. Li, N. Ramli, A. Z. Romli, M. I. Hakimi, and Z. Ilham, “Preparation and characterization of cellulose and microcrystalline cellulose isolated from waste Leucaena leucocephala seeds,” International Journal of Advanced and Applied Sciences, vol. 4, no. 3, pp. 51–58, Mar. 2017, doi: 10.21833/ijaas.2017.03.009.

[6]    Z. Bahreini, M. Abedi, and D. S. Fateh, “A study on preparation and characterization of microcrystalline cellulose from Lucerne (alfalfa) waste fibers,” Research Square (Research Square), Jul. 2022, doi: 10.21203/rs.3.rs-1529185/v1.

[7]    V. Suchiya, P. Potiyarj, and D. Aht-Ong, “Preparation and characterization of microcrystalline cellulose from cellulose based-agro wastes,” Journal of Engineering and Applied Sciences, Jul. 2022, doi: 10.3923/jeasci.2016.2566.2572

[8]    M. P. Fernández, J. F. Rodriguez, M. T. García, A. De Lucas, and I. Gracia, “Application of supercritical fluid extraction to brewer’s spent grain management,” Industrial & Engineering Chemistry Research, vol. 47, no. 5, pp. 1614–1619, Jan. 2008, doi: 10.1021/ie0708529.

[9]    S. I. Mussatto, G. Dragone, and I. C. Roberto, “Brewers’ spent grain: Generation, characteristics and potential applications,” Journal of Cereal Science, vol. 43, no. 1, pp. 1–14, Jan. 2006, doi: 10.1016/j.jcs.2005.06.001.

[10]  C. Xiros, E. Topakas, P. Katapodis, and P. Christakopoulos, “Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa,” Bioresource Technology, vol. 99, no. 13, pp. 5427–5435, Sep. 2008, doi: 10.1016/j.biortech. 2007.11.010.

[11]  P. E. Plaza, L. J. Gallego-Morales, M. Peñuela-Vásquez, S. Lucas, M. T. García-Cubero, and M. Coca, “Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii,” Bioresource Technology, vol. 244, pp. 166–174, Nov. 2017, doi: 10.1016/j.biortech. 2017.07.139.

[12]  M. Parchami, J. A. Ferreira, and M. J. Taherzadeh, “Brewing process development by integration of edible filamentous fungi to upgrade the quality of brewer’s spent grain (BSG),” BioResources, vol. 16, no. 1, pp. 1686–1701, Jan. 2021, doi: 10.15376/biores.16.1.1686-1701.

[13]  Y. Pu, N. Jiang, and A. J. Ragauskas, “Ionic liquid as a green solvent for lignin,” Journal of Wood Chemistry and Technology, vol. 27, no. 1, pp. 23–33, Apr. 2007, doi: 10.1080/0277381070 1282330.

[14]  F. S. Toma, Z. Jemaat, M. D. H. Beg, M. R. Khan, and R. M. Yunus, “Comparison between lignin extraction by alkaline and ultrasound-assisted alkaline treatment from oil palm empty fruit bunch,” IOP Conference Series Materials Science and Engineering, vol. 1092, no. 1, Mar. 2021, Art. no. 012027, doi: 10.1088/1757-899x/ 1092/1/012027.

[15]  V. M. Serrano-Martínez, H. Pérez-Aguilar, M. P. Carbonell-Blasco, F. Arán-Ais, and E. Orgilés-Calpena, “Steam explosion-based method for the extraction of cellulose and lignin from rice straw waste,” Applied Sciences, vol. 14, no. 5, Mar. 2024, Art. no. 2059, doi: 10.3390/app14052059.

[16]  M. A. Pérez-Limiñana, H. Pérez-Aguilar, C. Ruzafa-Silvestre, E. Orgilés-Calpena, and F. Arán-Ais, “Effect of processing time of steam-explosion for the extraction of cellulose fibers from Phoenix canariensis palm leaves as potential renewable feedstock for materials,” Polymers, vol. 14, no. 23, Nov. 2022, Art. no. 5206, doi: 10.3390/polym14235206.

[17]  W. Yang, Y. Feng, H. He, and Z. Yang, “Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp,” Materials, vol. 11, no. 7, Jul. 2018, Art. no. 1160, doi: 10.3390/ ma11071160.

[18]  R. Zhang and Y. Liu, “High energy oxidation and organosolv solubilization for high yield isolation of cellulose nanocrystals (CNC) from Eucalyptus hardwood,” Scientific Reports, vol. 8, no. 1, Nov. 2018, doi: 10.1038/s41598-018-34667-2.

[19]  W. Bessa, D. Trache, A. F. Tarchoun, A. Abdelaziz, M. H. Hussin, and N. Brosse, “Unraveling the effect of kraft and organosolv processes on the physicochemical properties and thermal stability of cellulose and its microcrystals produced from eucalyptus globulus,” Sustainability, vol. 15, no. 4, Feb. 2023, Art. no. 3384, doi: 10.3390/su15043384.

[20]  S. Serna-Loaiza, J. Adamcyk, S. Beisl, M. Miltner, and A. Friedl, “Sequential pretreatment of wheat straw: Liquid hot water followed by organosolv for the production of hemicellulosic sugars, lignin, and a Cellulose-Enriched pulp,” Waste and Biomass Valorization, vol. 13, no. 12, pp. 4771–4784, Jun. 2022, doi: 10.1007/s12649-022-01824-8.

[21]  W. Yu, C. Wang, Y. Yi, H. Wang, L. Zeng, M. Li, Y. Yang, and Z. Tan, “Comparison of deep eutectic solvents on pretreatment of raw ramie fibers for cellulose nanofibril production,” ACS Omega, vol. 5, no. 10, pp. 5580–5588, Mar. 2020, doi: 10.1021/acsomega.0c00506.

[22]  P. V. Barbará, A. A. Rafat, J. P. Hallett, and A. Brandt-Talbot, “Purifying cellulose from major waste streams using ionic liquids and deep eutectic solvents,” Current Opinion in Green and Sustainable Chemistry, vol. 41, Jun. 2023, Art. no. 100783, doi: 10.1016/j.cogsc.2023.100783.

[23]  L. Douard, J. Bras, T. Encinas, and M. N. Belgacem, “Natural acidic deep eutectic solvent to obtain cellulose nanocrystals using the design of experience approach,” Carbohydrate Polymers, vol. 252, Jan. 2021, Art. no. 117136, doi: 10.1016/j.carbpol.2020.117136.

[24]  V. V. Malolan, C. Trilokesh, K. B. Uppuluri, and A. Arumugam, “Ionic liquid assisted the extraction of cellulose from de-oiled Calophyllum inophyllum cake and its characterization,” Biomass Conversion and Biorefinery, vol. 12, no. 12, pp. 5687–5693, Sep. 2020, doi: 10.1007/s13399-020-01007-2.

[25]  W. Rasri, V. T. Thu, A. Corpuz, and L. T. Nguyen, “Preparation and characterization of cellulose nanocrystals from corncob via ionic liquid [Bmim][HSO4] hydrolysis: Effects of major process conditions on dimensions of the product,” RSC Advances, vol. 13, no. 28, pp. 19020–19029, Jan. 2023, doi: 10.1039/d3ra02715e.

[26] K. Glińska, J. Gitalt, E. Torrens, N. Plechkova, and C. Bengoa, “Extraction of cellulose from corn stover using designed ionic liquids with improved reusing capabilities,” Process Safety and Environmental Protection, vol. 147, pp. 181–191, Mar. 2021, doi: 10.1016/j.psep.2020. 09.035.

[27] M. S. A. Nurul, D. A. Gopakumar, O. T. F. A., Y. P. Beeran, S. Rizal, N. A. S. Aprilia, D. Hermawan, M. T. Paridah, S. Thomas and A. K. H. P. S., “Extraction of cellulose nanofibers via eco-friendly supercritical carbon dioxide treatment followed by mild acid hydrolysis and the fabrication of cellulose nanopapers,” Polymers, vol. 11, no. 11, p. 1813, Nov. 2019, doi: 10.3390/polym11111813.

[28]  E. L. N. Escobar, T. A. Da Silva, C. L. Pirich, M. L. Corazza, and L. P. Ramos, “Supercritical fluids: a promising technique for biomass pretreatment and fractionation,” Frontiers in Bioengineering and Biotechnology, vol. 8, Apr. 2020, doi: 10.3389/fbioe.2020.00252.

[29]  H. Nasution, E. Yahya, H. A. A. Khalil, M. Shaah, A. Suriani, A. Mohamed, T. Alfatah and C. Abdullah, “Extraction and isolation of cellulose nanofibers from carpet wastes using supercritical carbon dioxide approach,” Polymers, vol. 11, no. 11, p. 326, Jan. 2022, doi: 10.3390/ polym14020326.

[30]  R. S. A. Ribeiro, B. C. Pohlmann, V. Calado, N. Bojorge, and N. Pereira, “Production of nanocellulose by enzymatic hydrolysis: Trends and challenges,” Engineering in Life Sciences, vol. 19, no. 4, pp. 279–291, Feb. 2019, doi: 10.1002/elsc.201800158.

[31]  H. Ren, J. Shen, J. Pei, Z. Wang, Z. Peng, S. Fu and Y. Zheng, “Characteristic microcrystalline cellulose extracted by combined acid and enzyme hydrolysis of sweet sorghum,” Cellulose, vol. 26, pp. 8367–8381, Sep. 2019, doi: 10.1007/s10570-019-02712-6.

[32]  D. D. Ribes, A. P. Acosta, D. A. Gatto, E. Piva, R. De Avila Delucis, and R. Beltrame, “Nanofibrillated cellulose extracted by enzymatic hydrolysis followed by mechanical fibrillation,” Journal of Natural Fibers, vol. 19, no. 14, pp. 9363–9372, Oct. 2021, doi: 10.1080/15440478. 2021.1982826.

[33] J. Gröndahl, K. Karisalmi, and J. Vapaavuori, “Micro- and nanocelluloses from non-wood waste sources; processes and use in industrial applications,” Soft Matter, vol. 17, no. 43, pp. 9842–9858, Jan. 2021, doi: 10.1039/d1sm00958c.

[34] R. S. Abolore, S. Jaiswal, and A. K. Jaiswal, “Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review,” Carbohydrate Polymer Technologies and Applications, vol. 7, Nov. 2023, Art. no. 100396, doi: 10.1016/ j.carpta.2023.100396.

[35] S. Magalhães, C. Fernandes, J. F. S. Pedrosa, L. Alves, B. Medronho, P. J. T. Ferreira, and M. Da Graça Rasteiro, “Eco-friendly methods for extraction and modification of cellulose: An overview,” Polymers, vol. 15, no. 14, p. 3138, Jul. 2023, doi: 10.3390/polym15143138.

[36] S. I. Mussatto, G. J. M. Rocha, and I. C. Roberto, “Hydrogen peroxide bleaching of cellulose pulps obtained from brewer’s spent grain,” Cellulose, vol. 15, no. 4, pp. 641–649, Jan. 2008, doi: 10.1007/s10570-008-9198-4.

[37] E. Agboeze, N. P. Ani, and E. O. Omeje, “Extraction and characterization of pharmaceutical grade microcrystalline cellulose from bambara nut (Voandzeia subterranean (L) Thousars) Husk,” African Scientific Reports,  vol. 1, no. 2, pp. 103–114, Aug. 2022, doi: 10.46481/asr.2022.1.2.31.

[38]  F. Kusumattaqiin and W. Chonkaew, “Preparation and characterization of microcrystalline cellulose (MCC) by acid hydrolysis using microwave assisted method from cotton wool,” Macromolecular Symposia, vol. 354, no. 1, pp. 35–41, Aug. 2015, doi: 10.1002/masy.201400110.

[39] N. D. Kambli, V. Mageshwaran, P. G. Patil, S. Saxena, and R. R. Deshmukh, “Synthesis and characterization of microcrystalline cellulose powder from corn husk fibres using bio-chemical route,” Cellulose, vol. 24, no. 12, pp. 5355–5369, Oct. 2017, doi: 10.1007/s10570-017-1522-4.

[40] Z. Ahmad, N. N. Roziaizan, R. Rahman, A. F. Mohamad, and W. I. N. W. Ismail, “Isolation and characterization of microcrystalline cellulose (MCC) from rice husk (RH),” MATEC Web of Conferences, vol. 47, Apr. 2016, Art. no. 05013, doi: 10.1051/matecconf/20164705013.

[41] A. S. N. Hanani, A. Zuliahani, W. I. Nawawi, N. Razif, and A. R. Rozyanty, “The effect of various acids on properties of microcrystalline cellulose (MCC) extracted from rice husk (RH),” IOP Conference Series: Materials Science and Engineering, vol. 204, Apr. 2017, Art. no. 012025, doi: 10.1088/1757-899x/204/1/012025.

[42] H. Chen, “Lignocellulose biorefinery feedstock engineering,” in Lignocellulose Biorefinery Engineering, Amsterdam, Netherlands: Elsevier, pp. 37–86, 2015, doi: 10.1016/b978-0-08-100135-6.00003-x.

[43] F. Fitriani, S. Aprilia, N. Arahman, and M. R. Bilad, “Effect of acid concentration on the properties of microcrystalline cellulose from pineapple crown leaf,” Jurnal Rekayasa Kimia & Lingkungan, vol. 17, no. 1, pp. 1–7, 2022, doi: 10.23955/rkl.v17i1.21010.

[44] M. Z. Karim, Z. Z. Chowdhury, S. B. A. Hamid, and M. E. Ali, “Statistical optimization for acid hydrolysis of microcrystalline cellulose and its physiochemical characterization by using metal ion catalyst,” Materials, vol. 7, no. 10, pp. 6982–6999, Oct. 2014, doi: 10.3390/ma7106982.

[45] F. Fitrya, N. A. Fithri, and D. P. Wijaya, “Optimization of acid concentration and hydrolysis time in the isolation of microcrystalline cellulose from water hyacinth (Eichornia crassipes solm),” Tropical Journal of Natural Product Research (TJNPR), vol. 5, no. 3, pp. 503–508, Apr. 2021, doi: 10.26538/tjnpr/ v5i3.14.

[46] K. M. Vanhatalo and O. P. Dahl, “Effect of mild acid hydrolysis parameters on properties of microcrystalline cellulose,” BioResources, vol. 9, no. 3, pp. 4729–4740, May 2014, doi: 10.15376/ biores.9.3.4729-4740.

[47] W. T. N. Boschetti, A. M. M. L. Carvalho, A. De Cássia Oliveira Carneiro, G. B. Vidaurre, F. J. B. Gomes, and D. N. Soratto, “Effect of mechanical treatment of eucalyptus pulp on the production of nanocrystalline and microcrystalline cellulose,” Sustainability, vol. 13, no. 11, p. 5888, May 2021, doi: 10.3390/su13115888.

[48] M. Asif, D. Ahmed, N. Ahmad, M. T. Qamar, N. K. Alruwaili, and S. N. A. Bukhari, “Extraction and characterization of microcrystalline cellulose from Lagenaria siceraria fruit pedicles,” Polymers, vol. 14, no. 9, p. 1867, May 2022, doi: 10.3390/polym14091867.

[49] R. Javier-Astete, J. Jimenez-Davalos, and G. Zolla, “Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam.,” PLoS ONE, vol. 16, no. 10, Oct. 2021, Art. no. e0256559, doi: 10.1371/journal.pone.0256559.

[50] M. J. Pancholi, A. Khristi, A. K. M., and D. Bagchi, “Comparative analysis of lignocellulose agricultural waste and pre-treatment conditions with ftir and machine learning modeling,” BioEnergy Research, vol. 16, no. 1, pp. 123–137, Apr. 2022, doi: 10.1007/s12155-022-10444-y.

[51] M. P. Gundupalli, P. Tantayotai, E. J. Panakkal, S. Chuetor, S. Kirdponpattara, A. S. S. Thomas, B. K. Sharma, and M. Sriariyanun, “Hydrothermal pretreatment optimization and deep eutectic solvent pretreatment of lignocellulosic biomass: An integrated approach,” Bioresource Technology Reports, vol. 17, Feb. 2022, Art. no. 100957, doi: 10.1016/j.biteb.2022.100957.

[52] F. Xu, J. Yu, T. Tesso, F. Dowell, and D. Wang, “Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review,” Applied Energy, vol. 104, pp. 801–809, Apr. 2013, doi: 10.1016/j.apenergy. 2012.12.019.

[53] Z. Deng, A. Xia, Q. Liao, X. Zhu, Y. Huang, and Q. Fu, “Laccase pretreatment of wheat straw: effects of the physicochemical characteristics and the kinetics of enzymatic hydrolysis,” Biotechnology for Biofuels, vol. 12, no. 1, Jun. 2019, doi: 10.1186/s13068-019-1499-3.

[54] M. Woźniak, I. Ratajczak, D. Wojcieszak, A. Waśkiewicz, K. Szentner, J. Przybył, S. Borysiak, and P. Goliński, “Chemical and structural characterization of maize stover fractions in aspect of its possible applications,” Materials, vol. 14, no. 6, p. 1527, Mar. 2021, doi: 10.3390/ma14061527.

[55] J. S. Lupoi, E. Gjersing, and M. F. Davis, “Evaluating lignocellulosic biomass, its derivatives, and downstream products with raman spectroscopy,” Frontiers in Bioengineering and Biotechnology, vol. 3, Apr. 2015, doi: 10.3389/ fbioe.2015.00050.

[56] M. K. M. Haafiz, S. J. Eichhorn, A. Hassan, and M. Jawaid, “Isolation and characterization of microcrystalline cellulose from oil palm biomass residue,” Carbohydrate Polymers, vol. 93, no. 2, pp. 628–634, Apr. 2013, doi: 10.1016/j.carbpol. 2013.01.035.

[57]  R. Ravindran, S. Jaiswal, N. Abu-Ghannam, and A. K. Jaiswal, “A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers’ spent grain,” Bioresource Technology, vol. 248, pp. 272–279, Jan. 2018, doi: 10.1016/j.biortech.2017.06.039.

[58]  V. Kumar and S. H. Kothari, “Effect of compressional force on the crystallinity of directly compressible cellulose excipients,” International Journal of Pharmaceutics, vol. 177, no. 2, pp. 173–182, Jan. 1999, doi: 10.1016/s0378-5173(98)00340-8.

[59]  N. A. Heidari, M. Fathi, N. Hamdami, H. Taheri, G. Siqueira, and G. Nyström, “Thermally insulating cellulose nanofiber aerogels from brewery residues,” ACS Sustainable Chemistry & Engineering, vol. 11, no. 29, pp. 10698–10708, Jul. 2023, doi: 10.1021/acssuschemeng. 3c01113.

[60]  L. Camacho-Núñez, S. Jurado-Contreras, M. D. La Rubia, F. J. Navas-Martos, and J. A. Rodríguez-Liébana, “Cellulose-based upcycling of Brewer´s spent grains: Extraction and acetylation,” Journal of Polymers and the Environment, vol. 32, pp. 1–14, Dec. 2023, doi: 10.1007/s10924-023-03137-w.

[61]  K. Bhandari, S. R. Maulik, and A. R. Bhattacharyya, “Synthesis and characterization of microcrystalline cellulose from rice husk,” Journal of the Institution of Engineers (India) Series E, vol. 101, no. 2, pp. 99–108, Mar. 2020, doi: 10.1007/s40034-020-00160-7.

Full Text: PDF

DOI: 10.14416/j.asep.2024.11.002

Refbacks

  • There are currently no refbacks.