Facile Synthesis of Glutathione-Copper Nanoparticles for 3-Monochloropropanediol Colorimetric Detection
Abstract
Keywords
[1] S. Baptista-Silva, S. Borges, O. L. Ramos, M. Pintado, and B. Sarmento, “The progress of essential oils as potential therapeutic agents: a review,” Journal of Essential Oil Research, vol. 32, no. 4, pp. 279–295, Jul. 2020, doi: 10.1080/10412905.2020.1746698.
[2] V. Sharma and P. P. Kundu, “Addition polymers from natural oils—A review,” Progress in Polymer Science, vol. 31, no. 11, pp. 983–1008, Nov. 2006, doi: 10.1016/j.progpolymsci.2006.09.003.
[3] T. M. T. Nguyen and H. V. H. Nguyen, “Enzymatic assisted treatments of lycopene extraction from tomato (Lycopersicon Esculentum) peels using rice bran oil,” Applied Science and Engineering Progress, vol. 17, no. 1, Aug. 2023, Art. no. 6916, doi: 10.14416/j.asep.2023.08.003.
[4] L. Simasatitkul, S. Amornraksa, K. Katam, and S. Assabumrungrat, “Bio-jet fuel from vegetable oils: production process and perspective on modeling and simulation,” Applied Science and Engineering Progress, vol. 17, no. 3, Jun. 2024, Art. no. 7415, doi: 10.14416/j.asep.2024.06.013.
[5] O. Farobie and E. Hartulistiyoso, “Palm oil biodiesel as a renewable energy resource in indonesia: current status and challenges,” BioEnergy Research, vol. 15, no. 1, pp. 93–111, Mar. 2022, doi: 10.1007/s12155-021-10344-7.
[6] H. Limaho, Sugiarto, R. Pramono, and R. Christiawan, “The need for global green marketing for the palm oil industry in Indonesia,” Sustainability, vol. 14, no. 14, Jul. 2022, Art. no. 8621, doi: 10.3390/su14148621.
[7] Z. Fona, I. Irvan, R. Tambun, F. Fatimah, A. Setiawan, and A. Adriana, “Review on advance catalyst for biomass gasification,” Applied Science and Engineering Progress, vol. 17, no. 2, Jan. 2024, Art. no. 7295, doi: 10.14416/j.asep. 2024.01.001.
[8] Direktorat Statistik Tanaman Pangan, Hortikultura, dan Perkebunan, “Statistik Kelapa Sawit Indonesia 2022.” bps.go.id. https://www.bps.go.id/id/publication/2023/11/30/160f211bfc4f91e1b77974e1/statistik-kelapa-sawit-indonesia-2022.html (accessed Jul., 2024)
[9] E. Cisneros, K. Kis-Katos, and N. Nuryartono, “Palm oil and the politics of deforestation in Indonesia,” Journal of Environmental Economics and Management, vol. 108, Jul. 2021, Art. no. 102453, doi: 10.1016/j.jeem.2021. 102453.
[10] Badan Pengelola Dana Perkebunan Kelapa Sawit, “MENGENAL 3-MCPD dan GE,” MENGENAL 3-MCPD dan GE. bpdp.or.id. https://www.bpdp.or.id/mengenal-3-mcpd-dan-ge (accessed Jul., 2024)
[11] K. S. Hew, Y. P. Khor, T. B. Tan, M. M. Yusoff, O. M. Lai, A. J. Asis, F. A. Alharthi, I. A. Nehdi, and C. P. Tan, “Mitigation of 3-monochloropropane-1,2-diol esters and glycidyl esters in refined palm oil: A new and optimized approach,” LWT, vol. 139, Mar. 2021, Art. no. 110612, doi: 10.1016/j.lwt.2020.110612.
[12] J. Elisabeth, “Mitigation of 3-MCPDE and GE in palm oil in Indonesia,” E-Journal Menara Perkebunan, vol. 91, no. 2, Oct. 2023, doi: 10.22302/iribb.jur.mp.v91i2.549.
[13] A. Eisenreich, B. H. Monien, M. E. Götz, T. Buhrke, A. Oberemm, K. Schultrich, K. Abraham, A. Braeuning, and B. Schäfer, “3-MCPD as contaminant in processed foods: State of knowledge and remaining challenges,” Food Chemistry, vol. 403, Mar. 2023, Art. no. 134332, doi: 10.1016/j.foodchem.2022.134332.
[14] L. Peng, C. Yang, C. Wang, Q. Xie, Y. Gao, S. Liu, G. Fang, and Y. Zhou, “Effects of deodorization on the content of polycyclic aromatic hydrocarbons (PAHs), 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in rapeseed oil using ethanol steam distillation at low temperature,” Food Chemistry, vol. 413, Jul. 2023, Art. no. 135616, doi: 10.1016/j.foodchem.2023.135616.
[15] S. S. Syed Putra, W. J. Basirun, A. A. M. Elgharbawy, M. Hayyan, W. Al Abdulmonem, A. S. M. Aljohani, and A. Hayyan, “3-Monochloropropane-1,2-diol (3-MCPD): A review on properties, occurrence, mechanism of formation, toxicity, analytical approach and mitigation strategy,” Food Measure, vol. 17, no. 4, pp. 3592–3615, Aug. 2023, doi: 10.1007/ s11694-023-01883-y.
[16] EFSA Panel on Contaminants in the Food Chain (CONTAM), H. K. Knutsen, J. Alexander, L. Barregård, M. Bignami, B. Brüschweiler, S. Ceccatelli, B. Cottrill, M. Dinovi, L. Edler, B. Grasl‐Kraupp, L. (Ron) Hoogenboom, C. S. Nebbia, I. P. Oswald, A. Petersen, M. Rose, A. Roudot, T. Schwerdtle, C. Vleminckx, G. Vollmer, H. Wallace, A. Lampen, I. Morris, A. Piersma, D. Schrenk, M. Binaglia, S. Levorato, and C. Hogstrand, “Update of the risk assessment on 3‐monochloropropane diol and its fatty acid esters,” EFSA Journal, vol. 16, no. 1, Jan. 2018, doi: 10.2903/j.efsa.2018.5083.
[17] R. Almoselhy, M. Eid, W. Abd El-Baset, and A. Aboelhassan, “Determination of 3-MCPD in some edible oils using GC-MS/MS,” Egyptian Journal of Chemistry, vol. 64, no. 3, pp. 1639–1652, Mar. 2021, doi: 10.21608/ejchem.2021. 64084.3373.
[18] Y. Tang, G. Yang, X. Liu, L. Qin, W. Zhai, E. K. Fodjo, X. Shen, Y. Wang, X. Lou, and C. Kong, “Rapid sample enrichment, novel derivatization, and high sensitivity for determination of 3-Chloropropane-1,2-diol in soy sauce via high-performance liquid chromatography–tandem mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 71, no. 41, pp. 15388–15397, Oct. 2023, doi: 10.1021/acs.jafc.3c05230.
[19] A. A. Martin, E. K. Fodjo, Z. V. Eric-Simon, Z. Gu, G. Yang, T. Albert, C. Kong, and H.-F. Wang, “Cys-AgNPs modified gold electrode as an ultrasensitive electrochemical sensor for the detection of 3-chloropropane-1,2-diol,” Arabian Journal of Chemistry, vol. 14, no. 9, Sep. 2021, Art. no. 103319, doi: 10.1016/j.arabjc.2021.103319.
[20] W. Cheng, Q. Zhang, D. Wu, Y. Yang, Y. Zhang, and X. Tang, “A facile electrochemical method for rapid determination of 3-chloropropane-1,2-diol in soy sauce based on nanoporous gold capped with molecularly imprinted polymer,” Food Control, vol. 134, Apr. 2022, Art. no. 108750, doi: 10.1016/j.foodcont.2021.108750.
[21] Y. Wu, J. Feng, G. Hu, E. Zhang, and H.-H. Yu, “Colorimetric sensors for chemical and biological sensing applications,” Sensors, vol. 23, no. 5, Mar. 2023, Art. no. 2749, doi: 10.3390/ s23052749.
[22] E. Mauriz, “Clinical applications of visual plasmonic colorimetric sensing,” Sensors, vol. 20, no. 21, Oct. 2020, Art. no. 6214, doi: 10.3390/s20216214.
[23] A. A. Martin, E. K. Fodjo, G. B. I. Marc, T. Albert, and C. Kong, “Simple and rapid detection of free 3-monochloropropane-1,2-diol based on cysteine modified silver nanoparticles,” Food Chemistry, vol. 338, Feb. 2021, Art. no. 127787, doi: 10.1016/j.foodchem.2020.127787.
[24] R. G. Mahardika, F. A. Putri, Syarmila, F. Rizal, Guskarnali, and Henri, “Silver nanoparticle-based biosensor as a rapid test for the detection 3-monochloropropane-1,2-diol (3-MCPD) in cooking oil,” IOP Conference Series: Earth and Environmental Science, vol. 1267, no. 1, Dec. 2023, Art. no. 012101, doi: 10.1088/1755-1315/ 1267/1/012101.
[25] C.-C. Chang, C.-P. Chen, T.-H. Wu, C.-H. Yang, C.-W. Lin, and C.-Y. Chen, “Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications,” Nanomaterials, vol. 9, no. 6, Jun. 2019, Art. no. 861, doi: 10.3390/nano9060861.
[26] N. Wang, Z. Han, H. Fan, and S. Ai, “Copper nanoparticles modified graphitic carbon nitride nanosheets as a peroxidase mimetic for glucose detection,” RSC Advances, vol. 5, no. 111, pp. 91302–91307, 2015, doi: 10.1039/C5RA18957H.
[27] B. Liu, J. Zhuang, and G. Wei, “Recent advances in the design of colorimetric sensors for environmental monitoring,” Environmental Science: Nano, vol. 7, no. 8, pp. 2195–2213, 2020, doi: 10.1039/D0EN00449A.
[28] R. A. Soomro, A. Nafady, Sirajuddin, N. Memon, T. H. Sherazi, and N. H. Kalwar, “l-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions,” Talanta, vol. 130, pp. 415–422, Dec. 2014, doi: 10.1016/ j.talanta.2014.07.023.
[29] D. Deng, Y. Cheng, Y. Jin, T. Qi, and F. Xiao, “Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution,” Journal of Materials Chemistry, vol. 22, no. 45, pp. 23989–23995, 2012, doi: 10.1039/ c2jm35041f.
[30] A. Pérez-de León, J. Plasencia, A. Vázquez-Durán, and A. Méndez-Albores, “Comparison of the in vitro antifungal and anti-fumonigenic activities of copper and silver nanoparticles against Fusarium verticillioides,” Journal of Cluster Science, vol. 31, no. 1, pp. 213–220, Jan. 2020, doi: 10.1007/s10876-019-01638-0.
[31] K. R. Shubhashree, R. Reddy, A. K. Gangula, G. S. Nagananda, P. K. Badiya, S. S. Ramamurthy, P. Aramwit, and N. Reddy, “Green synthesis of copper nanoparticles using aqueous extracts from Hyptis suaveolens (L.),” Materials Chemistry and Physics, vol. 280, Mar. 2022, Art. no. 125795, doi: 10.1016/j.matchemphys.2022. 125795.
[32] S. S. Biresaw and P. Taneja, “Copper nanoparticles green synthesis and characterization as anticancer potential in breast cancer cells (MCF7) derived from Prunus nepalensis phytochemicals,” Materials Today: Proceedings, vol. 49, pp. 3501–3509, 2022, doi: 10.1016/j.matpr.2021.07.149.
[33] M. Tiwari, P. Jain, R. Chandrashekhar Hariharapura, K. Narayanan, U. Bhat K., N. Udupa, and J. V. Rao, “Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate,” Process Biochemistry, vol. 51, no. 10, pp. 1348–1356, Oct. 2016, doi: 10.1016/j.procbio.2016.08.008.
[34] C. Quintero-Quiroz, N. Acevedo, J. Zapata-Giraldo, L. E. Botero, J. Quintero, D. Zárate-Triviño, J. Saldarriaga, and V. Z. Pérez, “Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity,” Biomaterials Research, vol. 23, no. 1, Dec. 2019, Art. no. 27, doi: 10.1186/s40824-019-0173-y.
[35] J. Belloni, J.-L. Marignier, and M. Mostafavi, “Mechanisms of metal nanoparticles nucleation and growth studied by radiolysis,” Radiation Physics and Chemistry, vol. 169, Apr. 2020, Art. no. 107952, doi: 10.1016/j.radphyschem. 2018.08.001.
[36] T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, and M. C. Dang, “Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 2, no. 1, Mar. 2011, Art. no. 015009, doi: 10.1088/2043-6262/2/1/015009.
[37] M. Maliki, I. H. Ifijen, E. U. Ikhuoria, E. M. Jonathan, G. E. Onaiwu, U. D. Archibong, and A. Ighodaro, “Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties,” International Nano Letters, vol. 12, no. 4, pp. 379–398, Dec. 2022, doi: 10.1007/ s40089-022-00380-2.
[38] Z. S. Pillai and P. V. Kamat, “What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?,” The Journal of Physical Chemistry B, vol. 108, no. 3, pp. 945–951, Jan. 2004, doi: 10.1021/jp037018r.
[39] E. A. Mohamed, “Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates,” Heliyon, vol. 6, no. 1, Jan. 2020, Art. no. e03123, doi: 10.1016/j.heliyon.2019.e03123.
[40] Z. Niu and Y. Li, “Removal and utilization of capping agents in nanocatalysis,” Chemistry of Materials, vol. 26, no. 1, pp. 72–83, Jan. 2014, doi: 10.1021/cm4022479.
[41] T. U. Rajalakshmi, T. Reena, A. Doss, T. A. Kumar, T. A. Alahmadi, S. A. Alharbi, R. Mariselvam, and P. K. Mideen, “Evidence on temperature and concentration of reducing agents to control the nanoparticles growth and their microbial inhibitory efficacy,” Materials Research Express, vol. 10, no. 3, Mar. 2023, Art. no. 035002, doi: 10.1088/2053-1591/acbf08.
[42] G. Villaverde-Cantizano, M. Laurenti, J. Rubio-Retama, and R. Contreras-Cáceres, “Reducing agents in colloidal nanoparticle synthesis – an introduction,” in Reducing Agents in Colloidal Nanoparticle Synthesis, S. Mourdikoudis, Ed. London, UK: The Royal Society of Chemistry, pp. 1–27, 2021, doi: 10.1039/9781839163623-00001.
[43] S. N. Nyamu, L. Ombaka, E. Masika, and M. Ng’ang’a, “One‐pot microwave‐assisted synthesis of size‐dependent l ‐glutathione‐capped spherical silver nanoparticles suitable for materials with antibacterial properties,” Journal of Interdisciplinary Nanomedicine, vol. 4, no. 3, pp. 86–94, Sep. 2019, doi: 10.1002/jin2.62.
[44] S. Bertoni, B. Albertini, C. Facchini, C. Prata, and N. Passerini, “Glutathione-loaded solid lipid microparticles as innovative delivery system for oral antioxidant therapy,” Pharmaceutics, vol. 11, no. 8, Jul. 2019, Art. no. 364, doi: 10.3390/pharmaceutics11080364.
[45] M. Farrag and R. A. Mohamed, “Ecotoxicity of ∼1 nm silver and palladium nanoclusters protected by l -glutathione on the microbial growth under light and dark conditions,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 330, pp. 117–125, Nov. 2016, doi: 10.1016/j.jphotochem.2016.07.027.
[46] S. Sadeghi and M. Hosseinpour-Zaryabi, “Sodium gluconate capped silver nanoparticles as a highly sensitive and selective colorimetric probe for the naked eye sensing of creatinine in human serum and urine,” Microchemical Journal, vol. 154, May 2020, Art. no. 104601, doi: 10.1016/j.microc.2020.104601.
[47] M. Farrag, “Preparation, characterization and photocatalytic activity of size selected platinum nanoclusters,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 318, pp. 42–50, Mar. 2016, doi: 10.1016/j.jphotochem.2015.11.023.
[48] H. I. Badi’ah, F. Seedeh, G. Supriyanto, and A. H. Zaidan, “Synthesis of silver nanoparticles and the development in analysis method,” IOP Conference Series: Earth and Environmental Science, vol. 217, Jan. 2019, Art. no. 012005, doi: 10.1088/1755-1315/217/1/012005.
[49] W. Jin, G. Liang, Y. Zhong, Y. Yuan, Z. Jian, Z. Wu, and W. Zhang, “The influence of ctab-capped seeds and their aging time on the morphologies of silver nanoparticles,” Nanoscale Research Letters, vol. 14, no. 1, Dec. 2019, Art. no. 81, doi: 10.1186/s11671-019-2898-x.
[50] G. Ma, J. Cao, G. Hu, L. Zhu, H. Chen, X. Zhang, J. Liu, J. Ji, X. Liu, and C. Lu, “Porous chitosan/partially reduced graphene oxide/ diatomite composite as an efficient adsorbent for quantitative colorimetric detection of pesticides in a complex matrix,” The Analyst, vol. 146, no. 14, pp. 4576–4584, 2021, doi: 10.1039/ D1AN00621E.
[51] H. Li, H. Bai, Q. Lv, W. Wang, Z. Wang, H. Wei, and Q. Zhang, “A new colorimetric sensor for visible detection of Cu(II) based on photoreductive ability of quantum dots,” Analytica Chimica Acta, vol. 1021, pp. 140–146, Aug. 2018, doi: 10.1016/j.aca.2018.03.011.
DOI: 10.14416/j.asep.2024.11.005
Refbacks
- There are currently no refbacks.