Application of Waste Bovine Bone-derived Hydroxyapatite to Biodegradable Coatings for Paper-based Food Packaging
Abstract
Keywords
[1] K. K. Dash, P. Deka, S. P. Bangar, V. Chaudhary, M. Trif, and A. Rusu, “Applications of inorganic nanoparticles in food packaging: A comprehensive review,” Polymers, vol. 14, no. 3, pp. 1–17, 2022, doi: 10.3390/polym14030521.
[2] P. K. Kunam, D. Ramakanth, K. Akhila, and K. K. Gaikwad, “Bio-based materials for barrier coatings on paper packaging,” Biomass Conversion and Biorefinery, vol. 14, no. 12, pp. 12637–12652, 2024, doi: 10.1007/s13399-022-03241-2.
[3] S. Imam, G. Glenn, B.-S. Chiou, J. Shey, R. Narayan, and W. Orts, “Types, production and assessment of biobased food packaging materials,” in Environmentally Compatible Food Packaging, E. Chiellini, Ed. Floida: CRC, pp. 29–30, 2008, doi: 10.1533/9781845694784.
[4] S. M. Rangappa, S. Siengchin, H. N. Dhakal, “Green-composites: Ecofriendly and sustainability,” Applied Science and Engineering Progress, vol. 13, no. 3, pp. 183–184, 2020, doi: 10.14416/ j.asep.2020.06.001.
[5] F. Fitriani, M. R. Bilad, S. Aprilia, and N. Arahman, “Biodegradable hybrid polymer film for packaging: A review,” Journal of Natural Fibers, vol. 20, no. 1, 2023, doi: 10.1080/ 15440478.2022.2159606.
[6] A. Marinelli, M.V. Diamanti, M. Pedeferri, and B. D. Curto, “Kaolin-filled styrene-butadiene-based dispersion coatings for paper-based packaging: Effect on water, moisture, and grease barrier properties,” Coatings, vol. 13, no. 1, pp. 195, 2023, doi: 10.3390/coatings13010195.
[7] T. Hirvikorpi, M. Vähä-Nissi, T. Mustonen, A. Harlin, E. Iiskola, and M. Karppinen, “Thin inorganic barrier coatings for packaging materials,” in TAPPI PLACE Conference, 2010, pp. 2444–2484.
[8] R. Coles and M. Kirwan, Food and Beverage Packaging Technology, 2nd ed. New Jersey: Blackwell Publishing Ltd., 2011, p. 219.
[9] G. L. Robertson, Food Packaging Principles and Practice, 3rd ed. Boca Raton, Frolida: CRC, 2013, p. 33.
[10] S. M. Stella and U. Vijayalakshmi, “Development of nano-hydroxyapatite polymer composite and it’s in vitro activity for biomedical applications,” Asian Journal of Chemistry, vol. 35, no. 6, pp. 1361–1368, 2023, doi: 10.14233/ajchem.2023.27741.
[11] P. Turon, L. J. del Valle, C. Alemán, and J. Puiggalí, “Biodegradable and biocompatible systems based on hydroxyapatite nanoparticles,” Applied Sciences, vol. 7, no. 1, 2017, doi: 10.3390/app7010060.
[12] T. Başargan, N. Erdöl-Aydin, and G. Nasün-Saygili, “In situ biomimetic synthesis to produce hydroxyapatite–polyvinyl alcohol biocomposites: Precipitation and spray drying methods,” Polymer - Plastics Technology and Engineering, vol. 55, no. 5, pp. 447–452, 2016, doi: 10.1080/03602559.2015.1098674.
[13] O. N. Musskaya, A. I. Kulak, V. K. Krut’ko, S. A. Ulasevich, L. A. Lesnikovich, and L. F. Suchodub, “Composite films based on hydroxyapatite and polyvinyl alcohol,” Journal of Nano- and Electronic Physics, vol. 7, no 1, pp. 1022–1025, 2015.
[14] A. N. Itua, O. I. Oluwole, D. O. Ojo, and A. M. Hope, “Abrasion resistance and water absorption characteristics of Ti-HAp hybrid reinforced polyetheretherketone biocomposites,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6728, doi: 10.14416/j.asep. 2023.02.005.
[15] Aminatun, F. F. S. B. Tenong, D. Hikmawati, and E. M. Setiawati, “Characterization of vickers hardness and corrosion rate of stainless steel-316L coated with hydroxyapatite-polyvinyl alcohol,” Journal of Physics: Conference Series, vol. 1816, no. 1, 2021, Art. no. 012012, doi: 10.1088/1742-6596/1816/1/012012.
[16] D. Moreau, A.Villain, D. N. Ku, and L. Corté, “Surface exposure of hydroxyapatite Poly (vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite,” Biomatter, vol. 4, no. 1, 2014, Art. no. e28764, doi: 10.4161/biom. 28764.
[17] M. Akram, R. Ahmed, I. Shakir, W. A. W. Ibrahim, and R. Hussain, “Extracting hydroxyapatite and its precursors from natural resources,” Journal of Materials Science, vol. 49, no. 4. pp. 1461–1475, 2014, doi: 10.1007/ s10853-013-7864-x.
[18] Y. Liu, J. Li, D. Wang, F. Yang, L. Zhang, S. Ji, and S. Wang, “Enhanced extraction of hydroxyapatite from bighead carp (Aristichthys nobilis) scales using deep eutectic solvent,” Journal of Food Science, vol. 85, no. 1, pp. 150–156, 2020, doi: 10.1111/1750-3841.14971.
[19] B. L. Do, T. G. T. Ho, H. P. Phan, and T. Nguyen, “Green fabrication of effective silver loading on fishbone-derived hydroxyapatite: A robust catalyst for 4-nitrophenol reduction,” Arabian Journal for Science and Engineering, 2024, doi: 10.1007/s13369-024-09167-3.
[20] M. T. Hooi, S. W. Phang, H. Y. Yow, E. David, N. X. Kim, and H. L. Choo, “FTIR spectroscopy characterization and critical comparison of poly(vinyl)alcohol and natural hydroxyapatite derived from fish bone composite for bone-scaffold,” Journal of Physics: Conference Series, vol. 2120, no. 1, 2021, doi: 10.1088/ 1742-6596/2120/1/012004.
[21] N. Jamarun, A. Prasejati, Z. Zulhadjri, and S. Caniago, “Effect of chitosan concentration on hydroxyapatite/chitosan composite synthesis using the in-situ method as a dye adsorbent,” Kuwait Journal of Science, vol. 51, no. 4, 2024, Art. no. 100252, doi: 10.1016/j.kjs.2024.100252.
[22] R. Kumar and S. Mohanty, “Hydroxyapatite: A versatile bioceramic for tissue engineering application,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 32, no. 12, pp. 4461–4477, 2022, doi: 10.1007/ s10904-022-02454-2.
[23] V. Murugesan, G. Easwaradas, and K. Manju, “Evaluation of the antioxidant, antimicrobial, haemolytic and cytotoxic effect of eggshell based hydroxyapatite,” Journal of Cluster Science, vol. 33, no. 2, pp. 825–834, 2022, doi: 10.1007/ s10876-021-02153-x.
[24] R. L. P. Rocha, L. M. C. Honorio, R. D. d. S. Bezerra, P. Trigueiro, T. M. Duarte, M. G. Fonseca, E. C. Silva-Filho, and J. A. Osajima, “Light-activated hydroxyapatite photocatalysts: New environmentally-friendly materials to mitigate pollutants,” Minerals, vol. 12, no. 5, pp. 1–27, 2022, doi: 10.3390/min12050525.
[25] M. T. D. C. Español, ER J. G. Garcia, L. A. V. Maligaya, C. M. S. Santos, J. A. H. Santos, N. G. Suarnaba, R. V. C. Rubi, and R. Raguindin, “Ultrasound-assisted biomimetic synthesis of MOF-Hap nanocomposite via 10xSBF-like for the photocatalytic degradation of metformin,” Applied Science and Engineering Progress, vol. 17, no. 2, 2024, Art. no. 7251, doi: 10.14416/ j.asep.2023.11.002.
[26] A. M. I. Montone, F. Malvano, P. L. Pham, L. Cinquanta, R. Capparelli, F. Capuano, and D. Albanese, “Alginate-based coatings charged with hydroxyapatite and quercetin for fresh-cut papaya shelf life,” International Journal of Food Science and Technology, vol. 57, no. 8, pp. 5307–5318, 2022, doi: 10.1111/ijfs.15860.
[27] Hartatiek, Yudyanto, M. I. Wuriantika, J. Utomo, M. Nurhuda, Masruroh, and D. J. D. H. Santjojo, “Nanostructure, porosity and tensile strength of PVA/Hydroxyapatite composite nanofiber for bone tissue engineering,” Materials Today: Proceedings, vol. 44, pp. 3203–3206, 2020, doi: 10.1016/j.matpr.2020.11.438.
[28] N. Ongsuwan, W. Jehlee, and S. Chotisuwan, “Preparation of hydroxyapatite composite films derived from waste bovine bones,” in the Pure and Applied Chemistry International Conference, 2022, pp. 497–501.
[29] M. M. Afiq and A. R. Azura, “Effect of sago starch loadings on soil decomposition of Natural Rubber Latex (NRL) composite films mechanical properties,” International Biodeterioration and Biodegradation, vol. 85, pp. 139–149, 2013, doi: 10.1016/j.ibiod.2013.06.016.
[30] G. Wang, T. Lu, X. Zhang, M. Feng, C. Wang, W. Yao, S. Zhou, Z. Zhu, W. Ding, and M. He, “Structure and properties of cellulose/HAP nanocomposite hydrogels,” International Journal of Biological Macromolecules, vol. 186, pp. 377–384, Sep. 2021, doi: 10.1016/j.ijbiomac. 2021.07.060.
[31] W. Wei, W. Song, and S. Zhang, “Preparation and characterization of hydroxyapatite-poly(vinyl alcohol) composites reinforced with cellulose nanocrystals,” BioResources, vol. 9, no. 4, pp. 6087–6099, 2014, doi: 10.15376/ biores.9.4.6087-6099.
[32] M. N. Rahaman, Ceramic Processing and Sintering, 2nd ed. Florida: CRC Press, 2003, pp. 316–317, 364–374.
[33] R. Wulandari, Y. A. Swasono, M. Z. N. Ichsan, and A. Rifathin, “Thermal behavior and kinetic of degradation of PVA and PVA/CS/AL blend,” Sainteknol : Jurnal Sains dan Teknologi, vol. 21, no. 1, pp. 1–10, 2023, doi: 10.15294/sainteknol. v21i1.42675.
[34] D. T. Nguyen, K. L. Ly, N. M.-P. Tran, M. H. Ho, T. T.-P. Tran, T.-H. Nguyen, D. N. T. Nhi, and V. T. Vo, “Effect of microwave irradiation on polyvinyl alcohol as a carrier of silver nanoparticles in short exposure time,” International Journal of Polymer Science, vol. 2019, no. 1, 2019, doi: 10.1155/2019/3623907.
[35] O. A. Osuchukwu, A. Salihi, I. Abdullahi, B. Abdulkareem, and C. S. Nwannenna, “Synthesis techniques, characterization and mechanical properties of natural derived hydroxyapatite scaffolds for bone implants: A review,” SN Applied Sciences, vol. 3, no. 10, 2021, doi: 10.1007/s42452-021-04795-y.
[36] K. Hori, M. E. Flavier, S. Kuga, T. B. T. Lam, and K. Iiyama, “Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fiber: Fiber structure, chemical characteristics, and application,” Journal of Wood Science, vol. 46, no. 5, pp. 401–404, 2000, doi: 10.1007/ BF00776404.
[37] Z. Wang, D. Wang, Z. Li, and Y. Wang, “Metaplexis japonica seed hair fiber: A hydrophobic natural fiber with robust oil–water separation properties,” Cellulose, vol. 27, no. 5, pp. 2427–2435, 2020, doi: 10.1007/s10570-020-02976-3.
[38] R. Datta, “Enzymatic degradation of cellulose in soil: A review,” Heliyon, vol. 10, no. 1, 2024, Art. no. e24022, doi: 10.1016/j.heliyon.2024. e24022.
[39] F. Bueno, L. Fultz, C. Husseneder, M. Keenan, and S. Sathivel, “Biodegradability of bacterial cellulose polymer below the soil and its effects on soil bacteria diversity,” Polymer Degradation and Stability, vol. 217, 2023, Art. no. 110535. doi: 10.1016/j.polymdegradstab.2023.110535.
[40] E. Hoque, A. M. Rayhan, and S. I. Shaily, “Natural fiber-based green composites: Processing, properties and biomedical applications,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 689–718, 2021, doi: 10.14416/j.asep.2021.09.005.
[41] V. Caligiuri, G. Tedeschi, M. Palei, M. Miscuglio, B. Martin-Garcia, S. Guzman-Puyol, M. K. Hedayati, A. Kristensen, A. Athanassiou, R. Cingolani, V. J. Sorger, M. Salerno, F. Bonaccorso, R. Krahne, and J. A. Heredia-Guerrero, “Biodegradable and insoluble cellulose photonic crystals and metasurfaces,” ACS Nano, vol. 14, no. 8, pp. 9502–9511, 2020, doi: 10.1021/acsnano.0c03224.
[42] B. Tomšič, D. Marković, V. Janković, B. Simončič, J. Nikodinovic-Runic, T. Ilic-Tomic, and M. Radetić, “Biodegradation of cellulose fibers functionalized with CuO/Cu2O nanoparticles in combination with polycarboxylic acids,” Cellulose, vol. 29, no. 1, pp. 287–302, 2022, doi: 10.1007/s10570-021-04296-6.
[43] L. Xia, C. Tan, W. Ren, X. Liu, X. Zhang, J. Wu, X. Zhang, F. Guo, Y. Yu, and R. Yang, “Robust, biodegradable and flame-retardant nanocomposite films based on TEMPO-oxidized cellulose nanofibers and hydroxyapatite nanowires,” Carbohydrate Polymers, vol. 324, 2024, Art. no. 121495, doi: 10.1016/j.carbpol.2023.121495.DOI: 10.14416/j.asep.2024.10.015
Refbacks
- There are currently no refbacks.