Page Header

Techno-Economic Feasibility: Planning an On-Grid Solar Power System for Shrimp Pond Aeration

Aripriharta Aripriharta, Arya Wahyu Sukma Adji, Muhammad Cahyo Bagaskoro, Saodah Omar, Gwo-Jiun Horng

Abstract


The rapid growth of the Indonesian shrimp farming industry is accompanied by high production costs, primarily driven by the reliance on fossil fuel-based energy sources that can destabilize the ecosystem. This study investigates the technical, economic, and environmental feasibility of using three energy sources, including photovoltaics (PV), grid, and generator, to supply aeration needs in shrimp ponds. A comparative analysis of three scenarios with on-grid schemes was conducted through optimization using Queen Honey Bee Migration (QHBM) and Grey Wolf Optimization (GWO) algorithms, namely Net Present Cost (NPC), Renewable Fraction (RF), and Carbon Emission (ECO2). From a technical point of view, a lower electricity tariff is obtained compared to the grid, which is US$ 589,968.  The optimization results on the NPC, RF, and ECO2 parameters show that scenario 1 of the QHBM algorithm is the most optimal. This condition is evidenced by the acquisition of 3 parameters that are closest to the determination of the objective function, yielding an NPC of US$ 230,390.34, RF of 26.01%, and ECO2 of 1,484KgCO2e, with 655Wp PV specifications and the number of PV as many as 578pcs. Economically, the investment in a solar power plant for the shrimp pond obtained BEP of 4.2 years with a payback period (PP) obtained in year 5, net cash-flow of US$ 63,317.31, with ROI of 19% and NPV of US$ 775,159.40 in the same year.

Keywords



[1]    K. Kusdiantoro, A. Fahrudin, S. H. Wisudo, and B. Juanda, “Kinerja pembangunan perikanan tangkap di Indonesia,” Buletin Ilmiah Marina Sosial Ekonomi Kelautan Dan Perikanan, vol. 5, no. 2, Dec. 2019, doi: 10.15578/marina.v5i2.8053.

[2]    N. T. Nguyen and R. Matsuhashi, “An optimal design on sustainable energy systems for shrimp farms,” IEEE Access, vol. 7, pp. 165543–165558, 2019, doi: 10.1109/ACCESS.2019.2952923.

[3]    P. E. Campana, L. Wästhage, W. Nookuea, Y. Tan, and J. Yan, “Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems,” Solar Energy, vol. 177, pp. 782–795, 2019, doi: 10.1016/j.solener.2018.11.045.

[4]    N. N. Tien, R. Matsuhashi, and V. T. T. B. Chau, “A sustainable energy model for shrimp farms in the Mekong delta,” Energy Procedia, vol. 157, no. 2018, pp. 926–938, 2019, doi: 10.1016/j.egypro.2018.11.259.

[5]    A. Kumar, S. Moulick, and B. C. Mal, “Selection of aerators for intensive aquacultural pond,” Aquacultural Engineering, vol. 56, pp. 71–78, 2013, doi: 10.1016/j.aquaeng.2013.05.003.

[6]    Y. L. Zhukovskiy, D. Batueva, A. D. Buldysko, B. Gil, and V. V. Starshaia, “Fossil energy in the framework of sustainable development: Analysis of prospects and development of forecast scenarios,” Energies, vol. 14, no. 17, p. 5268, Aug. 2021, doi: 10.3390/en14175268.

[7]    N. Danish, M. A. Baloch, N. Mahmood, and J. W. Zhang, “Effect of natural resources, renewable energy and economic development on CO2 emissions in BRICS countries,” The Science of the Total Environment, vol. 678, pp. 632–638, May 2019, doi: 10.1016/j.scitotenv. 2019.05.028.

[8]    A. Raihan, M. I. Pavel, D. A. Muhtasim, S. Farhana, O. Faruk, and A. Paul, “The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia,” Innovation and Green Development, vol. 2, no. 1, Mar. 2023, Art. no. 100035, doi: 10.1016/j.igd.2023.100035.

[9]    A. Huda, I. Kurniawan, K. F. Purba, R. Ichwani, N. Aryansyah, and R. Fionasari, “Techno-economic assessment of residential and farm-based photovoltaic systems,” Renewable Energy, vol. 222, Dec. 2023, Art. no. 119886, doi: 10.1016/j.renene.2023.119886.

[10]  L. M. Putranto, T. Widodo, H. Indrawan, M. A. Imron, and S. A. Rosyadi, “Grid parity analysis: The present state of PV rooftop in Indonesia,” Renewable Energy Focus, vol. 40, pp. 23–38, Mar. 2022, doi: 10.1016/j.ref.2021.11.002.

[11]  F. W. Y. Saputra, N. Aripriharta, I. Fadlika, N. Mufti, K. H. Wibowo, and G. J. Jong, “Efficiency comparison between DC and AC grid toward green energy in Indonesia,” in International Conference on Automatic Control and Intelligent Systems, pp. 129–134, 2019.

[12]  M. Obeng, S. Gyamfi, N. S. Derkyi, A. T. Kabo-Bah, and F. Peprah, “Technical and economic feasibility of a 50 MW grid-connected solar PV at UENR Nsoatre Campus,” Journal of Cleaner Production, vol. 247, pp. 119–159, Nov. 2019, doi: 10.1016/j.jclepro.2019.119159.

[13]  I. S. Aktas and S. Ozenc, “A case study of techno-economic and environmental analysis of college rooftop for grid-connected PV power generation: Net zero 2050 pathway,” Case Studies in Thermal Engineering, vol. 56, Mar. 2024, Art. no. 104272, doi: 10.1016/j.csite.2024. 104272.

[14]  K. Asante, S. Gyamfi, M. Amo-Boateng, and F. Peprah, “Techno-economic analysis of solar PV electricity generation at the university of environment and sustainable development in Ghana,” Energy Reports, vol. 11, pp. 659–673, Jun. 2024, doi: 10.1016/j.egyr.2023.12.028.

[15]  N. Pamuk, “Techno-economic feasibility analysis of grid configuration sizing for hybrid renewable energy system in Turkey using different optimization techniques,” Ain Shams Engineering Journal, vol. 15, no. 3, Sep. 2023, Art. no. 102474, doi: 10.1016/j.asej.2023.102474.

[16]  Z. R. Tahir and M. Asim, “Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 2839–2861, Jul. 2017, doi: 10.1016/j.rser.2017. 06.090.

[17]  M. A. Budiyanto and M. H. Lubis, “Physical reviews of solar radiation models for estimating global solar radiation in Indonesia,” Energy Reports, vol. 6, pp. 1206–1211, Dec. 2020, doi: 10.1016/j.egyr.2020.11.053.

[18]  T. Ahmad, H. Zhang, and B. Yan, “A review on renewable energy and electricity requirement forecasting models for smart grid and buildings,” Sustainable Cities and Society, vol. 55, Jan. 2020, Art. no. 102052, doi: 10.1016/j.scs.2020. 102052.

[19]  I. Bodnar, B. Csehi, B. Sukaly, and A. C. Gaspar, “Examination of power loss and voltage drop of a solar panel as a function of environmental factors,” in 20th International Carpathian Control Conference (ICCC), 2019, 10.1109/ CarpathianCC.2019.8765911.

[20]  M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani, “Power loss due to soiling on solar panel: A review,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 1307–1316, Jan. 2016, doi: 10.1016/j.rser.2016.01.044.

[21]  M. Aghaei, N. M. Kumar, A. Eskandari, H. Ahmed, A. K. V. De Oliveira, and S. S. Chopra, “Solar PV Systems Design and Monitoring.” Amsterdam, Netherlands: Elsevier, pp. 117–145, 2020, doi: 10.1016/b978-0-12-819610-6.00005-3.

[22]  D. H. Arthanto, A. I. Malakani, B. G. D. Wicaksono, and A. Purwadi, “Off-Grid PV system modelling for communal load at Jifak Village-Asmat Regency, Papua Province based on MATLAB/Simulink,” in International Conference on High Voltage Engineering and Power Systems, 2019, pp. 322–327.

[23]  N. Ahmed, A. N. Khan, N. Ahmed, A. Aslam, K. Imran, M. B. Sajid, and A. Waqas, “Techno-economic potential assessment of mega scale grid-connected PV power plant in five climate zones of Pakistan,” Energy Conversion and Management, vol. 237, Apr. 2021, Art. no. 114097, doi: 10.1016/j.enconman.2021.114097.

[24]  C. Ghenai and M. Bettayeb, “Grid-tied solar PV/Fuel cell hybrid power system for university building,” Energy Procedia, vol. 159, pp. 96–103, Feb. 2019, doi: 10.1016/j.egypro.2018.12.025.

[25]  L. Vinatea and J. W. Carvalho, “Influence of water salinity on the SOTR of paddlewheel and propeller-aspirator-pump aerators, its relation to the number of aerators per hectare and electricity costs,” Aquacultural Engineering, vol. 37, no. 2, pp. 73–78, Feb. 2007, doi: 10.1016/j.aquaeng. 2007.02.001.

[26]  S. Moulick, B. C. Mal, and S. Bandyopadhyay, “Prediction of aeration performance of paddle wheel aerators,” Aquacultural Engineering, vol. 25, no. 4, pp. 217–237, Jan. 2002, doi: 10.1016/ s0144-8609(01)00087-5.

[27]  C. Jamroen, P. Kotchprapa, S. Chotchuang, R. Phoket, and P. Vongkoon, “Design and performance analysis of a standalone floating photovoltaic/battery energy-powered paddlewheel aerator,” Energy Reports, vol. 9, pp. 539–548, Mar. 2023, doi: 10.1016/j.egyr.2022.11.096.

[28]  L. D. Dien, L. H. Hiep, S. J. Faggotter, C. Chen, J. Sammut, and M. A. Burford, “Factors driving low oxygen conditions in integrated rice-shrimp ponds,” Aquaculture, vol. 512, Jul. 2019, Art. no. 734315, doi: 10.1016/j.aquaculture.2019.734315.

[29]  Y. Sukrismon, N. Aripriharta, N. Hidayatullah, N. Mufti, A. N. Handayani, and G. J. Horng, “Smart fish pond for economic growing in catfish farming,” in International Conference on Computer Science, Information Technology, and Electrical Engineering, pp. 49–53, 2019.

[30]  P. Deshpande, C. De Saxe, D. Ainalis, J. Miles, and D. Cebon, “A breakeven cost analysis framework for electric road systems,” Transportation Research Part D Transport and Environment, vol. 122, Aug. 2023, Art. no. 103870, doi: 10.1016/j.trd.2023.103870.

[31]  V. Kumar, R. L. Shrivastava, and S. P. Untawale, “Fresnel lens: A promising alternative of reflectors in concentrated solar power,” Renewable and Sustainable Energy Reviews, vol. 44, pp. 376–390, Jan. 2015, doi: 10.1016/j.rser.2014.12.006.

[32]  M. J. B. Kabeyi and O. A. Olanrewaju, “The levelized cost of energy and modifications for use in electricity generation planning,” Energy Reports, vol. 9, pp. 495–534, Jul. 2023, doi: 10.1016/j.egyr.2023.06.036.

[33]  N. Ennemiri, A. Berrada, A. Emrani, J. Abdelmajid, and R. E. Mrabet, “Optimization of an off-grid PV/biogas/battery hybrid energy system for electrification: A case study in a commercial platform in Morocco,” Energy Conversion and Management X, vol. 21, Dec. 2023, Art. no. 100508, doi: 10.1016/j.ecmx. 2023.100508.

[34]  E. Codina, B. Domenech, M. Juanpera, L. Palomo-Avellaneda, and R. Pastor, “Is switching to solar energy a feasible investment? A techno-economic analysis of domestic consumers in Spain,” Energy Policy, vol. 183, Sep. 2023, Art. no. 113834, doi: 10.1016/j.enpol.2023.113834.

[35]  H. Yang, W. Gao, X. Wei, Y. Wang, and Y. Li, “Techno-economic comparative analysis of PV third–party ownership between customer and developer sides in Japan,” Journal of Energy Storage, vol. 80, Jan. 2024, Art. no. 110062, doi: 10.1016/j.est.2023.110062.

[36]  D. Yang, H. Latchman, D. Tingling, and A. A. Amarsingh, “Design and return on investment analysis of residential solar photovoltaic systems,” IEEE Potentials, vol. 34, no. 4, pp. 11–17, Jul. 2015, doi: 10.1109/mpot.2013.2284602.

[37]  P. Maghsoudi and S. Sadeghi, “A novel economic analysis and multi-objective optimization of a 200-kW recuperated micro gas turbine considering cycle thermal efficiency and discounted payback period,” Applied Thermal Engineering, vol. 166, Nov. 2019, Art. no. 114644, doi: 10.1016/j.applthermaleng.2019.114644.

[38]  Y. Li, X. Yang, E. Du, Y. Liu, S. Zhang, C. Yang, N. Zhang, and C. Liu, “A review on carbon emission accounting approaches for the electricity power industry,” Applied Energy, vol. 359, Jan. 2024, Art. no. 122681, doi: 10.1016/ j.apenergy.2024.122681.

[39]  D. Jose, N. Kitiborwornkul, M. Sriariyanun, and K. Keerthi, “A review on chemical pretreatment methods of lignocellulosic biomass: Recent advances and progress,” Applied Science and Engineering Progress, vol. 15, no. 4, 2022, Art. no. 6210, doi: 10.14416/j.asep.2022.08.001.

[40]  A. B. D. Nandiyanto, N. N. Azizah, and G. C. S. Girsang, “Optimal design and techno-economic analysis for corncob particles briquettes: A literature review of the utilization of agricultural waste and analysis calculation,” Applied Science and Engineering Progress, vol. 15, no. 3, Oct. 2021, Art. no. 5508, doi: 10.14416/j.asep.2021. 10.006.

[41]  A. Aripriharta, T. W. Bayuanggara, I. Fadlika, S. Sujito, A. N. Afandi, N. Mufti, M. Diantoro, and G.-J. Horng, “Comparison of queen honey bee colony migration with various MPPTs on photovoltaic system under shaded conditions,” EUREKA Physics and Engineering, no. 4, pp. 52–62, Jul. 2023, doi: 10.21303/2461-4262.2023. 002836.

[42]  K. H. Wibowo, N. Aripriharta, I. Fadlika, G. J. Horng, S. Wibawanto, and F. W. Y. Saputra, “A new MPPT based on Queen Honey Bee Migration (QHBM) in stand-alone photovoltaic,” in IEEE International Conference on Automatic Control and Intelligent Systems, 2019, pp. 123–128.

[43]  G.-J. Jong, N. Aripriharta, N. Hendrick, and G.-J. Horng, “A novel Queen Honey Bee Migration (QHBM) algorithm for sink repositioning in wireless sensor network,” Wireless Personal Communications, vol. 95, no. 3, pp. 3209–3232, Feb. 2017, doi: 10.1007/s11277-017-3991-z.

[44]  A. Aripriharta, F. A. P. Sudarto, I. Fadlika, S. Sujito, M. C. Bagaskoro, S. Omar, and N. B. Rosmin, “The enhanced self-lift luo converter with QHBM for maximum power extraction on PV charging station,” Frontier Energy System and Power Engineering, vol. 5, no. 2, p. 65, Jun. 2024, doi: 10.17977/um049v5i2p65-80.

[45]  A. A. Belsky, D. Y. Glukhanich, M. J. Carrizosa, and V. V. Starshaia, “Analysis of specifications of solar photovoltaic panels,” Renewable and Sustainable Energy Reviews, vol. 159, Feb. 2022, Art. no. 112239, doi: 10.1016/j.rser.2022. 112239.

[46]  S. Hajimirza, G. E. Hitti, A. Heltzel, and J. Howell, “Specification of micro-nanoscale radiative patterns using inverse analysis for increasing solar panel efficiency,” Journal of Heat Transfer, vol. 134, no. 10, Aug. 2012, doi: 10.1115/1.4006209.

[47]  A. Z. Hafez, A. Soliman, K. A. El-Metwally, and I. M. Ismail, “Design analysis factors and specifications of solar dish technologies for different systems and applications,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 1019–1036, Oct. 2016, doi: 10.1016/j.rser.2016. 09.077.

[48]  S. Islam, A. Woyte, R. Belmans, P. J. M. Heskes, and P. M. Rooij, “Investigating performance, reliability and safety parameters of photovoltaic module inverter: Test results and compliances with the standards,” Renewable Energy, vol. 31, no. 8, pp. 1157–1181, Aug. 2005, doi: 10.1016/ j.renene.2005.06.014.

[49]  M. Oettingen, C. Döderlein, E. D’Agata, K. Tuček, and J. Cetnar, “Comparison of MCB and FISPACT burn-up performances using the HELIOS experiment technical specifications,” Nuclear Engineering and Design, vol. 242, pp. 399–412, Nov. 2011, doi: 10.1016/j.nucengdes. 2011.10.014.

[50]  N. Amir, A. Errami, and L. Seung-Woo, “Technical, economical, environmental feasibility of solar PV system for sustainable shrimp aquaculture: A case study of a circular shrimp pond in Indonesia,” in 2022 IEEE 8th Information Technology International Seminar (ITIS), 2022, pp. 102–107, doi: 10.1109/itis57155. 2022.10010264.

[51]  E. Setiawan, H. Thalib, and S. Maarif, “Techno-Economic analysis of Solar photovoltaic system for fishery cold storage based on ownership models and regulatory boundaries in Indonesia,” Processes, vol. 9, no. 11, p. 1973, Nov. 2021, doi: 10.3390/pr9111973.

[52]  S. Sreenath, A. M. Azmi, and Z. A. M. Ismail, “Feasibility of solar hybrid energy system at a conservation park: Technical, economic, environmental analysis,” Energy Reports, vol. 9, pp. 711–719, Nov. 2022, doi: 10.1016/j.egyr. 2022.11.065.

[53]  S. Sreenath, A. M. Azmi, and Z. A. M. Ismail, “Feasibility of solar hybrid energy system at a conservation park: Technical, economic, environmental analysis,” Energy Reports, vol. 9, pp. 711–719, Nov. 2022, doi: 10.1016/j.egyr. 2022.11.065.

[54]  H. Siringoringo, “Consumption model of imported products: Indonesian case,” Procedia - Social and Behavioral Sciences, vol. 81, pp. 195–199, Jun. 2013, doi: 10.1016/j.sbspro.2013. 06.412.

Full Text: PDF

DOI: 10.14416/j.asep.2024.11.003

Refbacks

  • There are currently no refbacks.