Page Header

Gelatin Gel from By-products of Sand Jellyfish (Rhopilema hispidum): Physicochemical and Biochemical Characterization

Wiriya Charoenchokpanich, Pratchaya Muangrod, Benjawan Thumthanaruk, Vilai Rungsardthong, Sittiruk Roytrakul, Sawanya Charoenlappanit, Benjamaporn Wonganu, Federico Casanova

Abstract


Salted sand-type jellyfish by-products are abundant in collagen, which may be processed into gelatin to decrease food waste. From the production standpoint, various factors affect gel qualities, including raw material used, pretreatment methods, and extraction times. So far, gelatin extracted from desalted sand-type jellyfish by-products (D-SJB) must be adequately characterized. Therefore, this research aimed to characterize gelatin from D-SJB using different pretreatment methods and extraction times. D-SJB was treated with 0.2 M hydrochloric acid (acid method) and extracted for 24 h at 60 °C (SA24), the optimal gelatin extraction condition with the highest gel qualities, while the jellyfish gelatin obtained after D-SJB was treated with pepsin and extracted for 48 h had the lowest gel qualities. The viscosity, gel strength, gelling temperature, and melting temperatures of SA24 were 20.80 cP, 352.22 g, 11.97 °C, and 22.70 °C, respectively. All jellyfish gelatin’s gelling and melting temperatures ranged from 6.13−11.97 °C and 15.85−22.70 °C, exhibiting a cold set gel and unstable gels at room temperature. The different pretreatment methods and extraction times during the jellyfish gelatin production resulted in the conversion of amides A, B, I, II, and III, especially the wavenumber of the amide I increased after pepsin pretreatment and increased with longer extraction time. Twenty-one collagen subtypes in bovine, fish, and jellyfish gelatin were analyzed using LC-MS/MS. The collagen alpha-2(I) chain, a key gelatin component, was identified in all gelatins. The research novelty showed the profound characterization results of gelatin gel produced from D-SJB. However, further experiments will be needed for pilot-scale production to be used in food and non-food applications.

Keywords



[1]    A. Hamzeh, S. Benjakul, T. Sae-Leaw, and S. Sinthusamran, “Effect of drying methods on gelatin from splendid squid (Loligo formosana) skins,” Food Bioscience, vol. 26, pp. 96–103, Dec. 2018, doi: 10.1016/j.fbio.2018.10.001.

[2]    S. Kasapis, “Developing minced fish products of improved eating quality: An interplay of instrumental and sensory texture,” International Journal of Food Properties, vol. 12, pp. 11–26, 2009, doi: 10.1080/10942910802252171.

[3]    P. Kittiphattanabawon, S. Benjakul, S. Sinthusamran, and H. Kishimura, “Gelatin from clown featherback skin: Extraction conditions,” LWT - Food Science and Technology, vol. 66, pp. 186–192, Mar. 2016, doi: 10.1016/j.lwt.2015.10. 029.

[4]    I. Milovanovic and M. Hayes, “Marine gelatine from rest raw materials,” Applied Sciences, vol. 8, no. 12, Nov. 2018, Art. no. 2407, doi: 10.3390/ app 8122407.

[5]    L. M. Kasankala, Y. Xue, Y. Weilong, S. D. Hong, and Q. He, “Optimization of gelatin extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology,” Bioresource Technology, vol. 98, pp. 3338–3343, Dec. 2017, doi: 10.1016/j.bior tech.2006.03.019.

[6]    P. Kittiphattanabawon, S. Benjakul, W.  Visessanguan, and F. Shahidi, “Cryoprotective effect of gelatin hydrolysate from blacktip shark skin on surimi subjected to different freeze-thaw cycles,” LWT, vol. 47, no. 2, pp. 437–442, Jul. 2012, doi: 10.1016/j.lwt.2012.02.003.

[7]    L. Wang, H. J. Zhang, X. Liu, Y. Liu, X. Zhu, X. Liu, and X. You, “A physically cross-linked sodium alginate-gelatin hydrogel with high mechanical strength,” ACS Applied Polymer Materials, vol. 3, pp. 3197–3205, May 2021 doi: 10.1021/acsapm.1c00404.

[8]    Z. Zhu, S. Ling, J. Yeo, S. Zhao, L. Tozzi, M. J. Buehler, F. Omenetto, C. Li, and D. L. Kaplan, “High-strength, durable all-silk fibroin hydrogels with versatile processability toward multifunctional applications,” Advanced Functional Materials, vol. 28, Mar. 2018, Art. no. 1704757, doi: 10.1002/adfm.201704757.

[9]    T. Huang, Z. C. Tu, X. Shangguan, X. Sha, H. Wang, L. Zhang, and N. Bansal, “Fish gelatin modifications: A comprehensive review,” Trends in Food Science & Technology, vol. 86, pp. 260–269, Apr. 2019, doi: 10.1016/j.tifs.       201 9.02.048.

[10]  M. Omori and E. Nakano, “Jellyfish fisheries in southeast Asia,” Hydrobiologia, vol. 451, pp. 19–26, May 2001, doi: 10.1023/A:1011879821323.

[11]  T. Klaiwong, P. Hutangura, S. Rutatip, P. Wongsa-Ngasri, and B. Thumthanaruk, “Comparative properties of pepsin hydrolyzed jellyfish protein from salted jellyfish,” Journal of Agricultural Science and Technology B, vol. 4, no. 7, pp. 555–564, 2014.

[12]  S. Cho, J. R. Ahn, J. S. Koo, and S. B. Kim, “Physicochemical properties of gelatin from jellyfish Rhopilema hispidum,” Fisheries and Aquatic Sciences, vol. 17, no. 3, pp. 299–304, Sep. 2014, doi: 10.5657/FAS.2014.0299.

[13]  A. Lueyot, V. Rungsardthong, S. Vatanyoopaisarn, P. Hutangura, B. Wonganu, P.  Wongsa-Ngasri, S. Charoenlappanit, S. Roytrakul, and B. Thumthanaruk, “Influence of collagen and some proteins on gel properties of jellyfish gelatin,” PLoS ONE, vol. 16, no. 6, Jun. 2021, Art. no. e0253254, doi: 10.1371/journal. pone.0253254.

[14]  A. Lueyot, B. Wonganu, V. Rungsardthong, S. Vatanyoopaisarn, P. Hutangura, P. Wongsa-Ngasri, S. Roytrakul, S. Charoenlappanit, T. Wu, and B. Thumthanaruk, “Improved jellyfish gelatin quality through ultrasound-assisted salt removal and an extraction process,” PLoS ONE, vol. 17, Nov. 2022, Art. no. e0276080, doi: 10.1371/journal.pone.0276080.

[15]  W. Charoenchokpanich, P. Muangrod, S. Roytrakul, V. Rungsardthong, B. Wonganu, S. Charoenlappanit, F. Casanova, and B. Thumthanaruk, “Exploring the model of cefazolin released from jellyfish gelatin-based hydrogels as affected by glutaraldehyde,” Gels, vol. 10, no. 4, Apr. 2024, Art. no. 271, doi: 10.33 90/gels10040271.

[16]  U. Rodsuwan, B. Thumthanaruk, O. Kerdchoechuen, and N. Laohakunjit, “Functional properties of type A gelatin from jellyfish (Lobonema smithii),” International Food Research Journal, vol. 23, pp. 507–514, 2016.

[17]  T. Zhang, R. Sun, M. Ding, L. Tao, L. Liu, N. Tao, L. Liu, N. Tao, X. Wang, and J. Zhong, “Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins,” Food Chemistry, vol. 328, Oct. 2020, Art. no. 127114, doi: 10.1016/j.foodchem.20 20.127114.

[18]  M. Jridi, R. Nasri, I. Lassoued, N. Souissi, A. Mbarek, A. Barkia, and M. Nasri, “Chemical and biophysical properties of gelatins extracted from alkali-pretreated skin of cuttlefish (Sepia officinalis) using pepsin,” Food Research International, vol. 54, no. 2, pp. 1680–1687, Dec. 2013, doi: 10.1016/j.foodres.2013.09.026.

[19]  M. Jridi, N. Souissi, A. Mbarek, G. Chadeyron, M. Kammoun, and M. Nasri, “Comparative study of physico-mechanical and antioxidant properties of edible gelatin films from the skin of cuttlefish,” International Journal of Biological Macromolecules, vol. 61, pp. 17–25, Oct. 2013, doi: 10.1016/j.ijbiomac.2013.06.040.

[20]  W. Charoenchokpanich, V. Rungsardthong, S. Vatanyoopaisarn, B. Thumthanaruk, and Y. Tamaki, “Salt reduction in salted jellyfish (Lobonema smithii) using a mechanical washing machine,” Science, Engineering and Health Studies, vol. 14, no. 3, pp. 184–192, Sep. 2020, doi: 10.14456/sehs.2020.17.

[21]  AOAC, Official Method of Analysis: Association of Analytical Chemists, 19th ed., Washington, D.C.: AOAC International, 2012.

[22]  W. Charoenchokpanich, P. Muangrod, V. Rungsardthong, S. Vatanyoopaisarn, B. Wonganu, S. Roytrakul, and B. Thumthanaruk, “Effect of hydrochloric acid extraction on yield and gel properties of gelatine from salted jellyfish by-products,” in E3S Web of Conferences, 2021, Art. no. 02009.

[23]  U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature vol. 227, pp. 680–685, Aug. 1970, doi: 10.1038/227680a0.

[24]  S. Tyanova, T. Temu, and J. Cox, “The MaxQuant computational platform for mass spectrometry-based shotgun proteomics,” Nature Protocols, vol. 11, pp. 2301–2319, Dec. 2016, doi: 10.1038/nprot.2016.136.

[25]  S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein, T. Geiger, M. Mann, and J. Cox, “The Perseus computational platform for comprehensive analysis of (prote) omics data,” Nature Methods, vol. 13, pp. 731–740, Sep. 2016, doi: 10.1038/nmeth.3901.

[26]  Z. Pang, G. Zhou, J. Ewald, L. Chang, O. Hacariz, N. Basu, and J. Xia, “Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data,” Nature Protocols, vol. 17, pp. 1735–1761, Aug. 2022, doi: 10.1038/s41596-022-00710-w.

[27]  P. G. Chiarelli, R. B. Pegg, G. D. Kumar, and K. M. Solval, “Exploring the feasibility of developing novel gelatin powders from salted, dried cannonball jellyfish (Stomolophus meleagris),” Food Bioscience, vol. 44, Dec. 2021, Art. no. 101397, doi: 10.1016/j.fbio.2021. 101397.

[28]  B. Wonganu, “Application of gelatin derived from waste tilapia scales to an antibiotic hydrogel pad,” in E3S Web of Conferences, 2020, Art. no. 03004.

[29]  S. Cao, Y. Wang, L. Xing, W. Zhang, and G. Zhou, “Structure and physical properties of gelatin from bovine bone collagen influenced by acid pretreatment and pepsin,” Food and Bioproducts Processing, vol. 121, pp. 213–223, May 2020, doi: 10.1016/j.fbp.2020.03.001.

[30]  S. Sinthusamran, S. Benjakul, and H. Kishimura, “Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions,” Food Chemistry, vol. 152, pp. 276–284, Jun. 2014, doi: 10.1016/j.foodchem.2013.11.109.

[31]  P. Kaewruang, S. Benjakul, T. Prodpran, and S. Nalinanon, “Physicochemical and functional properties of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as affected by extraction conditions,” Food Bioscience, vol. 2, pp. 1–9, Jun. 2013, doi: 10.1016/j.fbio.2013. 03.002.

[32]  A. Erge and Ö. Zorba, “Optimization of gelatin extraction from chicken mechanically deboned meat residue using alkaline pre-treatment,” LWT, vol. 97, pp. 205–212, Nov. 2018, doi: 10.1016/j. lwt.2018.06.057.

[33]  P. Díaz-Calderón, E. Flores, A. González-Muñoz, M. Pepczynska, F. Quero, and J. Enrione, J. “Influence of extraction variables on the structure and physical properties of salmon gelatin,” Food Hydrocolloids, vol. 71, pp. 118–128, Oct. 2018, doi: 10.1016/j.foodhyd.2017.0 5.004.

[34]  Y. Ma, X. Zeng, X. Ma, R. Yang, W. Zhao, “A simple and eco-friendly method of gelatin production from bone: One-step biocatalysis,” Journal of Cleaner Production, vol. 209, pp. 916–926, Feb. 2019, doi: 10.1016/j.jclepro.20 18.10.313.

[35]  V. Normand, S. Muller, J. C. Ravey, and A. Parker, “Gelation kinetics of gelatin: A master curve and network modeling,” Macromolecules, vol. 33, no. 3, pp. 1063–1071, Feb. 2000, doi: 10.1021/ma9909455.

[36]  W. Liao, Y. Zhu, Y. Lu, Y. Wang, X. Dong, G. Xia, and X. Shen, “Effect of extraction variables on the physical and functional properties of tilapia gelatin,” LWT, vol. 146, Jul. 2021, Art. no. 111514, doi: 10.1016/j.lwt.2021.111514.

[37]  H. Kchaou, N. Benbettaieb, M. Jridi, M. Nasri, F. Debeaufort, “Influence of Maillard reaction and temperature on functional, structure and bioactive properties of fish gelatin films,” Food Hydrocolloids, vol. 97, Dec. 2019, Art. no. 105196, doi: 10.1016/j.foodhyd.2019.105196.

[38]  B. Yesiltas, C. Robert, H. O. Petersen, F. Jessen, F. Ajalloueian, M. A. Mohammadifar, C. Jacobsen, J. J. Sloth, G. Jakobsen, and F. Casanova, “Gelatin from saithe (Pollachius virens) skin: Biochemical characterization and oxidative stability in O/W emulsions,” Marine Drugs, vol. 20, no. 12, Dec. 2022, Art. no. 739, doi: 10.3390/md20120739.

[39]  J. H. Muyonga, C. G. B. Cole, and K. G. Duodu, “Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus),” Food Chemistry, vol. 86, no. 3, pp. 325–332, Jul. 2004, doi: 10.1016/j.foodchem.2003.09.038.

[40]  S. Benjakul, K. Oungbho, W. Visessanguan, Y. Thiansilakul, and S. Roytrakul, “Characteristics of gelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus,” Food Chemistry, vol. 116, no. 2, pp. 445–451, Sep. 2009, doi: 10.1016/j.food chem.2009.02.063.

Full Text: PDF

DOI: 10.14416/j.asep.2024.10.003

Refbacks

  • There are currently no refbacks.