Page Header

Harnessing Genetic Engineering for Enhancing Lignocellulose Biomass Production

Ankit Joshi, Madhulika Gupta, Theerawut Phusantisampan

Abstract


-

[1]    J. L. Holechek, H. M. E. Geli, M. N. Sawalhah, and R. Valdez, “A global assessment: Can renewable energy replace fossil fuels by 2050?,” Sustainability, vol. 14, no. 8, p. 4792, 2022, doi: 10.3390/su14084792.

[2]    M. Sriariyanun and B. Dharmalingam, “From waste to wealth: Challenges in producing value-added biochemicals from lignocellulose biorefinery,” Journal of Applied Science and Emerging Technology, vol. 22, no. 3, 2023, doi: 10.14416/JASET.KMUTNB.2023.03.001.

[3]    T. Kundu, S. Suyash, M. Gupta, and B. Chowdhury, “Introduction to greenhouse gases composition and characteristics,” in Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion. Amsterdam, Netherlands: Elsevier, 2024, pp. 3–18, doi: 10.1016/B978-0-443-19066-7.00008-4.

[4]    M. Sriariyanun, M. P. Gundupalli, V. Phakeenuya, T. Phusamtisampan, Y.-S. Cheng, and P. Venkatachalam, “Biorefinery Approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms,” Journal of Applied Science and Engineering, vol. 27, no. 2, pp. 1985–2005, 2023.

[5]    D. Jose, S. Vasudevan, P. Venkatachalam, S. K. Maity, A. A. Septevani, M. Gupta, P. Tantayotai, H. E. Bari, and M. Sriariyanun, “Effective deep eutectic solvent pretreatment in one-pot lignocellulose biorefinery for ethanol production,” Industrial Crops and Products, vol. 222, 2024, Art. no. 119626, doi: 10.1016/j.indcrop.2024. 119626.

[6]    B. Paramasivam, R. Mensah, and M. Sriariyanun, “Advantages and significance of acid and alkali pretreatment of lignocellulose biomass in biorefining process,” Applied Science and Engineering Progress, vol. 17, no. 1, 2024, Art. no. 6913, doi: 10.14416/j.asep.2023.05.004.

[7]    M. Gupta, P. Dupree, L. Petridis, and J. C. Smith, “Patterns in interactions of variably acetylated xylans with hydrophobic cellulose surfaces,” Cellulose, vol. 30, no. 18, pp. 11323–11340, 2023, doi: 10.1007/s10570-023-05584-z.

[8]    M. Gupta, T. B. Rawal, P. Dupree, J. C. Smith, and L. Petridis, “Spontaneous rearrangement of acetylated xylan on hydrophilic cellulose surfaces,” Cellulose, vol. 28, pp. 3327–3345, 2021, doi: 10.1007/s10570-021-03706-z.

[9]    M. Gundupalli and M. Sriariyanun, “Recent trends and updates for chemical pretreatment of lignocellulosic biomass,” Applied Science and Engineering Progress, vol. 16, no. 1, 2023, Art. no. 5842, doi: 10.14416/j.asep.2022.03.002.

[10]  P. Wang, N. Dudareva, J. A. Morgan, and C. Chapple, “Genetic manipulation of lignocellulosic biomass for bioenergy,” Current Opinion in Chemical Biology, vol. 29, pp. 32–39. 2015, doi: 10.1016/j.cbpa.2015.08.006.

[11]  K. L. Kadam and J. D. McMillan, “Availability of corn stover as a sustainable feedstock for bioethanol production,” Bioresource Technology, vol. 88, no. 1, pp. 17–25, 2003, doi: 10.1016/ S0960-8524(02)00269-9.

[12]  O. Shoseyov, Z. Shani, and I. Levy, “Carbohydrate binding modules: Biochemical properties and novel applications,” Microbiology and Molecular Biology Reviews, vol. 70, no. 2, pp. 283–295, 2006, doi: 10.1128/mmbr.00028-05.

[13]  D. Konar, R. Saha, D. Bhattacharya, and M. Mukhopadhyay, “Present status and future prospect of genetic and metabolic engineering for biofuels production from lignocellulosic biomass,” in Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass. Amsterdam, Netherlands: Elsevier, 2020, pp. 171–192, doi: 10.1016/B978-0-12-817953-6.00003-8.

[14]  P. Phitsuwan, K. Sakka, and K. Ratanakhanokchai, “Improvement of lignocellulosic biomass in planta: A review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability,” Biomass and Bioenergy, vol. 58, pp. 390–405, 2013, doi: 10.1016/j.biombioe. 2013.08.027.

[15]  T. van der Weijde, C. L. A. Kamei, A. F. Torres, W. Vermerris, O. Dolstra, R. G. F. Visser, and L. M. Trindade, “The potential of C4 grasses for cellulosic biofuel production,” Frontiers in Plant Science, vol. 4, p. 107, 2013, doi: 10.3389/fpls. 2013.00107.

[16]  N. Xu, W. Zhang, S. Ren, F. Liu, C. Zhao, H. Liao, Z. Xu, J. Huang, Q. Li, Y. Tu, B. Yu, Y. Wang, J. Jiang, J. Qin, and L. Peng, “Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus,” Biotechnology for Biofuels, vol. 5, pp. 1–12, 2012, doi: 10.1186/1754-6834-5-58.

[17]  Y. Wang, C. Fan, H. Hu, Y. Li, D. Sun, Y. Wang, and L. Peng, “Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops,” Biotechnology Advances, vol. 34, no. 5, pp. 997–1017, 2016, doi: 10.1016/j.biotechadv.2016.06.001.

[18]  M. R. Allwright and G. Taylor, “Molecular breeding for improved second generation bioenergy crops,” Trends in Plant Science, vol. 21, no. 1, pp. 43–54, 2016, doi: 10.1016/j.tplants. 2015.10.002.

[19]  P. M. Shih, Y. Liang, and D. Loqué, “Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops,” The Plant Journal, vol. 87, no. 1, pp. 103–117, 2016, doi: 10.1111/tpj.13176.

Full Text: PDF

DOI: 10.14416/j.asep.2024.09.013

Refbacks

  • There are currently no refbacks.