Page Header

Green Diesel Production Through Deoxygenation Reaction with Natural Zeolite-supported Nickel and Copper Catalyst

Gede Herry Arum Wijaya, Fidelis Stefanus Hubertson Simanjuntak, Adid Adep Dwiatmoko

Abstract


The depletion of fossil fuels and their environmental impact necessitate sustainable alternatives. Green diesel, a biofuel with a chemical structure similar to conventional diesel, has gained traction as a viable alternative. This study explores the development of a cost-effective catalyst for green diesel production using deoxygenation. Deoxygenation refers to a broad class of chemical reactions where oxygen atoms are stripped from a molecule. This research employed abundant Indonesian natural zeolite (NZ) as a catalyst support, impregnated with non-noble metals, nickel (Ni), and copper (Cu). The investigation revealed that the NiCu/NZ catalyst achieved the highest oleic acid conversion (90.40%) and green diesel yield. The product distribution, ranging from C15 to C18 hydrocarbons, reflects the moderate acidity of the catalyst, promoting diverse cracking patterns compared to highly acidic catalysts. Additionally, the high specific surface area of NZ facilitates the conversion and good product distribution. Furthermore, the optimization process demonstrated that increasing hydrogen pressure during deoxygenation enhances both conversion rate and green diesel production.

Keywords



[1]     T. Wuttilerts, S. Chulalaksananukul, P. Peerapongpipat, and P. Suksommanat, “Evaluation of biodiesel production using oil feedstock from contaminated macro algae in shrimp farming,” Applied Science and Engineering Progress, vol. 12, no. 3, pp. 179–185, 2019, doi: 10.14416/j.ijast.2018.11.005.

[2]     S. Deshpande, A. Joshi, S. Vagge, and N. Anekar, “Corrosion behavior of nodular cast iron in biodiesel blends,” Engineering Failure Analysis, vol. 105, pp. 1319–1327, 2019.

[3]     S. Zulkepli, J. C. Juan, H. V. Lee, N. S. A. Rahman, P. L. Show, and E. P. Ng, “Modified mesoporous HMS supported Ni for deoxygenation of triolein into hydrocarbon-biofuel production,” Energy Conversion and Management, vol. 165, pp. 495–508, 2018.

[4]     N. Asikin-Mijan, H. V. Lee, J. C. Juan, A. R. Noorsaadah, G. Abdulkareem-Alsultan, M. Arumugam, Y. H. Taufiq-Yap, “Waste clamshell-derived CaO supported Co and W catalysts for renewable fuels production via cracking-deoxygenation of triolein,” Journal of Analytical and Applied Pyrolysis, vol. 120, pp. 110–120, 2016.

[5]     S. L. Douvartzides, N. D. Charisiou, K. N. Papageridis, and M. A. Goula, “Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines,” Energies, vol. 12, p. 809, 2019.

[6]     E. S. de Almeida, D. da Silva Damaceno, L. Carvalho, P. A. Victor, R. M. Dos Passos, P. V. de Almeida Pontes, M. Cunha-Filho, K. A. Sampaio, S. Monteiro, “Thermal and physical properties of crude palm oil with higher oleic content,” Applied Sciences, vol. 11, p. 7094, 2021.

[7]     F. P. Sousa, L. N. Silva, D. B. de Rezende, L. C. A. de Oliveira, and V. M. D. Pasa, “Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel,” Fuel, vol. 223, pp. 149–156, 2018.

[8]     H. I. Mahdi, A. Bazargan, G. McKay, N. I. W. Azelee, and L. Meili, “Catalytic deoxygenation of palm oil and its residue in green diesel production: A current technological review,” Chemical Engineering Research and Design, vol. 174, pp. 158–187, 2021.

[9]     M. Snåre, I. Kubičková, P. Mäki-Arvela, K. Eränen, and D. Y. Murzin, “Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel,” Industrial and Engineering Chemistry Research, vol. 45, no. 16, pp. 5708–5715, 2006.

[10]   L. N. Silva, I. C. P. Fortes, F. P. De Sousa, and V. M. D. Pasa, “Biokerosene and green diesel from macauba oils via catalytic deoxygenation over Pd/C,” Fuel, vol. 164, pp. 329–338, 2016.

[11]   M. M. Ambursa, P. Sudarsanam, L. H. Voon, S. B. A. Hamid, and S. K. Bhargava, “Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels,” Fuel Processing Technology, vol. 162, pp. 87–97, 2017.

[12]   K. N. Papageridis, N. D. Charisiou, S. L. Douvartzides, V. Sebastian, S. J. Hinder, M. A. Baker, S. Alkhoori, K. Polychronopoulou, M. A. Goula, “Effect of operating parameters on the selective catalytic deoxygenation of palm oil to produce renewable diesel over Ni supported on Al2O3, ZrO2 and SiO2 catalysts,” Fuel Processing Technology, vol. 209, 2020, Art. no. 106547.

[13]   M. Y. Choo, L. E. Oi, T. C. Ling, E. P. Ng, Y. C. Lin, G. Centi, J. C. Juan, “Deoxygenation of triolein to green diesel in the H2-free condition: Effect of transition metal oxide supported on zeolite Y,” Journal of Analytical and Applied Pyrolysis, vol. 147, p. 104797, 2020.

[14]   A. E. Coumans and E. J. M. Hensen, “A real support effect on the hydrodeoxygenation of methyl oleate by sulfided NiMo catalysts,” Catalysis Today, vol. 298, pp. 181–189, 2017.

[15]   O. U. Valdés-Martínez, V. A. Suárez-Toriello, J. A. de los Reyes, B. Pawelec, and J. L. G. Fierro, “Support effect and metals interactions for NiRu/Al2O3, TiO2 and ZrO2 catalysts in the hydrodeoxygenation of phenol,” Catalysis Today, vol. 296, pp. 219–227, 2017.

[16]   D. Yao, H. Yang, H. Chen, and P. T. Williams, “Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene,” Applied Catalysis B: Environmental, vol. 227, pp. 477–487, 2018.

[17]   R. Kumar, V. Strezov, E. Lovell, T. Kan, H. Weldekidan, J. He, S. Jahan, B. Dastjerdi, J. Scott, “Enhanced bio-oil deoxygenation activity by Cu/zeolite and Ni/zeolite catalysts in combined in-situ and ex-situ biomass pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 140, pp. 148–160, 2019.

[18]   T. L. R. Hewer, A. G. F. Souza, K. T. C. Roseno, P. F. Moreira, R. Bonfim, R. M. B. Alves, M. Schmal, “Influence of acid sites on the hydrodeoxygenation of anisole with metal supported on SBA-15 and SAPO-11,” Renewable Energy, vol. 119, pp. 615–624, 2018.

[19]   M. Al-Muttaqii, F. Kurniawansyah, D. H. Prajitno, and A. Roesyadi, “Bio-kerosene and bio-gasoil from coconut oils via hydrocracking process over Ni-Fe/HZSM-5 catalyst,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 14, no. 2, pp. 309–319, 2019.

[20]   G. A. Bani and M. D. Bani, “Pyrolysis of polyethylene from plastic waste using activated ende natural zeolite as a catalyst,” Applied Science and Engineering Progress, vol. 17, no. 2, 2024, Art. no. 7320, doi: 10.14416/j.asep. 2024.01.006.

[21]   B. Wongchalerm, T. Arunchai, T. Khamkenbong, S. Sangsuradet, A. Pitiraksakul, and P. Worathanakul, “Simulation and experimental studies on sustainable process optimization of CO2 adsorption using zeolite 5A pellet,” Applied Science and Engineering Progress, vol. 16, no. 2, 2022, Art. no. 5861, doi: 10.14416/j.asep.2022.04.004.

[22]   B. H. Susanto, M. Nasikin, Sukirno, and A. Wiyo, “Synthesis of Renewable Diesel through Hydrodeoxygenation Using Pd/zeolite Catalysts,” Procedia Chemistry, vol. 9, pp. 139–150, 2014.

[23]   R. Putra, W. W. Lestari, F. R. Wibowo, and B. H. Susanto, “Fe/Indonesian natural zeolite as hydrodeoxygenation catalyst in green diesel production from palm oil,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 13, no. 2, pp. 245–255, 2018.

[24]   T. K. Habibie, B. H. Susanto, and M. F. Carli, “Effect of NiMo/Zeolite catalyst preparation method for bio jet fuel synthesis,” in E3S Web of Conferences, Nov. 2018, p. 02024.

[25]   X. Guo, L. Guo, Y. Zeng, R. Kosol, X. Gao, Y. Yoneyama, G. Yang, N. Tsubaki, “Catalytic oligomerization of isobutyl alcohol to jet fuels over dealuminated zeolite Beta,” Catalysis Today, vol. 368, pp. 196–203, 2021.

[26]   S. Gea, A. Haryono, A. Andriayani, J. L. Sihombing, A. N. Pulungan, T. Nasution, R. Rahayu, Y. A. Hutapea, “The stabilization of liquid smoke through hydrodeoxygenation over nickel catalyst loaded on sarulla natural zeolite,” Applied Sciences, vol. 10, p. 4126, 2020.

[27]   H. Du, X. Ma, P. Yan, M. Jiang, Z. Zhao, and Z. C. Zhang, “Catalytic furfural hydrogenation to furfuryl alcohol over Cu/SiO2 catalysts: A comparative study of the preparation methods,” Fuel Processing Technology, vol. 193, pp. 221–231, 2019.

[28]   X. Ma, H. Song, and J. Yan, “Electrochemically mediated gradient metallic film generation,” New Journal of Chemistry, vol. 45, no. 4, pp. 1809–1813, 2021.

[29]   A. Quindimil, U. De-La-Torre, B. Pereda-Ayo, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, J. A. González-Marcos, A. Bueno-López, J. R. González-Velasco, “Effect of metal loading on the CO2 methanation: A comparison between alumina supported Ni and Ru catalysts,” Catal Today, vol. 356, pp. 419–432, 2020.

[30]   Q. Liu, F. Gu, X. Lu, Y. Liu, H. Li, Z. Zhong, G. Xu, F. Su, “Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation,” Applied Catalysis A: General, vol. 488, pp. 37–47, 2014.

[31]   S. De, S. Dutta, and B. Saha, “Critical design of heterogeneous catalysts for biomass valorization: Current thrust and emerging prospects,” Catalysis Science and Technology, vol. 6, no. 20, pp. 7364–7385, 2016.

[32]   W. Yao, J. Li, Y. Feng, W. Wang, X. Zhang, Q. Chen, S. Komarneni, Y. Wang, “Thermally stable phosphorus and nickel modified ZSM-5 zeolites for catalytic co-pyrolysis of biomass and plastics,” RSC Advances, vol. 5, no. 39, pp. 30485–30494, 2015.

[33]   E. F. Iliopoulou, S. D. Stefanidis, K. G. Kalogiannis, A. Delimitis, A. A. Lappas, and K. S. Triantafyllidis, “Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite,” Applied Catalysis B: Environmental, vol. 127, pp. 281–290, 2012.

[34]   N. Asikin-Mijan, J. M. Ooi, G. AbdulKareem-Alsultan, H. V. Lee, M. S. Mastuli, N. Mansir, F. A. Alharthi, A. A. ALghamdi, Y. H. Taufiq-Yap, “Free-H2 deoxygenation of Jatropha curcas oil into cleaner diesel-grade biofuel over coconut residue-derived activated carbon catalyst,” Journal of Cleaner Production, vol. 249, 2020, Art. no. 119381.

[35]   H. Gao, L. Hu, Y. Hu, X. Lv, Y. B. Wu, and G. Lu, “Origins of Lewis acid acceleration in nickel-catalysed C-H, C-C and C-O bond cleavage,” Catalysis Science and Technology, vol. 11, no. 13, pp. 4417–4428, 2021.

[36]   M. Yang, J. Shao, Z. Yang, H. Yang, X. Wang, Z. Wu, H. Chen, “Conversion of lignin into light olefins and aromatics over Fe/ZSM-5 catalytic fast pyrolysis: Significance of Fe contents and temperature,” Journal of Analytical and Applied Pyrolysis, vol. 137, pp. 259–265, 2019.

[37]   C. Li, Nishu, D. Yellezuome, Y. Li, R. Liu, and J. Cai, “Enhancing bio-aromatics yield in bio-oil from catalytic fast pyrolysis of bamboo residues over bi-metallic catalyst and reaction mechanism based on quantum computing,” Fuel, vol. 336, 2023, Art. no. 127158,

[38]   P. Vanelderen, J. Vancauwenbergh, B. F. Sels, and R. A. Schoonheydt, “Coordination chemistry and reactivity of copper in zeolites,” Coordination Chemistry Reviews, vol. 257, pp. 483–494, 2013.

[39]   H. Mitta, P. K. Seelam, S. Ojala, R. L. Keiski, and P. Balla, “Tuning Y-zeolite based catalyst with copper for enhanced activity and selectivity in vapor phase hydrogenolysis of glycerol to 1,2-propanediol,” Applied Catalysis A: General, vol. 550, pp. 308–319, 2018.

[40]   B. Seemala, C. M. Cai, R. Kumar, C. E. Wyman, and P. Christopher, “Effects of Cu–Ni Bimetallic Catalyst Composition and Support on Activity, Selectivity, and Stability for Furfural Conversion to 2-Methyfuran,” ACS Sustainable Chemistry & Engineering, vol. 6, pp. 2152–2161, 2017.

[41] R. Kumar, V. Strezov, E. Lovell, T. Kan, H. Weldekidan, J. He, B. Dastjerdi, J. Scott, “Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts,” Bioresource Technology, vol. 279, pp. 404–409, 2019.

[42]   F. Han, Q. Guan, and W. Li, “Deoxygenation of methyl palmitate over SiO2-supported nickel phosphide catalysts: Effects of pressure and kinetic investigation,” RSC Advances, vol. 5, no. 130, pp. 107533–107539, 2015.

[43]   Z. Cai, R. Liang, P. Yu, Y. Liu, Y. Ma, Y. Cao, K. Huang, L. Jiang, X. Bao, “Improving conversion of methyl palmitate to diesel-like fuel through catalytic deoxygenation with B2O3-modified ZrO2,” Fuel Processing Technology, vol. 226, 2022, Art. no. 107091.

[44]   A. N. Kay Lup, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds,” Journal of Industrial and Engineering Chemistry, vol. 56, pp. 1–34, 2017.

[45]   Y. Yang, Q. Wang, X. Zhang, L. Wang, and G. Li, “Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/SiO2-Al2O3,” Fuel Processing Technology, vol. 116, pp. 165–174, 2013.

[46]   E. Santillan-Jimenez, R. Loe, M. Garrett, T. Morgan, and M. Crocker, “Effect of Cu promotion on cracking and methanation during the Ni-catalyzed deoxygenation of waste lipids and hemp seed oil to fuel-like hydrocarbons,” Catalysis Today, vol. 302, pp. 261–271, 2018.

[47]   Y. Li, C. Zhang, Y. Liu, S. Tang, G. Chen, R. Zhang, X. Tang, “Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation,” Fuel, vol. 189, pp. 23–31, 2017.

[48]   C. Miao, G. Zhou, S. Chen, H. Xie, and X. Zhang, “Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate,” Renewable Energy, vol. 153, pp. 1439–1454, 2020.

[49]   A. S. Berenblyum, V. Y. Danyushevsky, E. A. Katsman, R. S. Shamsiev, and V. R. Flid, “Specifics of the stearic acid deoxygenation reaction on a copper catalyst,” Petroleum Chemistry, vol. 53, no. 6, pp. 362–366, 2013.

Full Text: PDF

DOI: 10.14416/j.asep.2024.10.002

Refbacks

  • There are currently no refbacks.