Page Header

Electrochemical Characteristics of Ambarella Peel Waste as Liquid Electrolyte for Zn-Cu Biobattery

Marcelinus Christwardana, Renanda Aprilia Putri Pramudita, Ngadiwiyana Ngadiwiyana

Abstract


This study focuses on the electrochemical characterization of Zn-Cu bio-battery cells utilizing electrolytes derived from ambarella peel waste. The primary objectives are to determine the half-cell and full-cell characteristics of these bio-batteries at various concentration ratios and to identify the optimal concentration ratio for maximum performance. Cyclic voltammetry analysis of the half-cells revealed an oxidation peak at 0.5 V vs Ag/AgCl, corresponding to the conversion of uronic acid to aldaric acid. Additionally, two reduction peaks were observed: hydrogen ion reduction to H2 at 0 V vs Ag/AgCl and water reduction at –0.42 V vs Ag/AgCl. The rate-determining step analysis indicated that the redox reactions in the ambarella peel electrolyte solution were surface reactions. The highest rate constant (ks) of 0.722 ± 0.05 s–1 was observed at a 1:2 concentration ratio. This ratio also resulted in the highest battery capacity of 0.0816 mAh and the maximum power density of 16.13 mW/m2. The study concluded that the 1:2 concentration ratio of ambarella peel waste electrolyte solution is optimal, outperforming the 1:1 and 1:3 ratios in terms of battery capacity and power density.

Keywords



[1]    Y. Afriyanti, H. Sasana, and G. Jalunggono, “Analisis faktor-faktor yang mempengaruhi konsumsi energi terbarukan di Indonesia,” Dinamic, vol. 2, no. 3, pp. 865–884, 2020.

[2]    L. Parinduri and T. Parinduri, “Konversi biomassa sebagai sumber energi terbarukan,” Journal of Electrical Technology, vol. 5, no. 2, pp. 88–92, 2020.

[3]    O. Togibasa, E. Haryati, K. Dahlan, Y. Ansanay, T. Siregar, and M. N. Liling, “Characterization of bio-battery from tropical almond paste,” Journal of Physics: Conference Series, vol. 1204, 2019, Art. no. 012036.

[4]    M. Nasution, “Karakteristik baterai sebagai penyimpan energi listrik secara spesifik,” Journal of Electrical Technology, vol. 6, no. 1, pp. 35–40, 2021.

[5]    A. E. Setyono and N. Sinaga, “Zero waste Indonesia: Peluang, Tantangan dan optimalisasi waste to energy,” Eksergi, vol. 17, no. 2, pp. 116–124, 2021.

[6]    K. So, Y. Kitazumi, O. Shirai, and K. Kano, “Analysis of factors governing direct electron transfer - type bioelectrocatalysis of bilirubin oxidase at modified electrodes,” Journal of Electroanalytical Chemistry, vol. 783, pp. 316–323, 2016.

[7]    U. Z. Siddiqui and A. K. Pathrikar, “The future of energy biobattery,” International Journal of Research in Engineering and Technology, vol. 2, pp. 99–111, 2013.

[8]    H. Kamilah, T. W. DS, and S. Maftukhah, “Pemanfaatan buah kedondong dan kulit pisang ambon sebagai sumber energi listrik alternatif,” Jurnal Ilmiah Fakultas Teknik, vol 1, pp. 142–151, 2020.

[9]    Z. Hussain, Zuhra, G. Rukh, A. Zada, M. Y. Naz, K. M. Khan, S. Shukrullah, and S. A. Sulaiman, “Construction of rechargeable bio-battery cells from electroactive antioxidants extracted from wasted vegetables,” Cleaner Engineering and Technology, vol. 5, 2021, Art. no. 100342.

[10]  S. W. Suciyati, and A. Supriyanto, “Analisis jeruk dan kulit jeruk sebagai larutan elektrolit terhadap kelistrikan sel volta,” Jurnal Teori Dan Aplikasi Fisika, vol. 7, pp. 7–16, 2019.

[11]  B. B. Koubala, G. Kansci, and M.-C. Ralet, Ambarella—Spondias Cytherea, in Exotic Fruits. Amsterdam, Netherlands: Elsevier, pp. 15–22, 2019.

[12]  F. Walsh, “Electrolytic conductivity and its measurement,” Transactions of The IMF, vol. 70, pp. 45–49, 1992.

[13]  H. Purnomo, “Pengaruh keasaman buah jeruk terhadap konduktivitas listrik,” Orbith, vol. 6 pp. 276–281, 2010.

[14]  B. Liu, S. Wang, Z. Wang, H. Lei, Z. Chen, and W. Mai, “Novel 3D nanoporous Zn–Xu alloy as long‐life anode toward high‐voltage double electrolyte aqueous zinc‐ion batteries,” Small, vol. 16, no. 22, 2020, Art. no. 2001323.

[15]  Q. Zhu, M. Cheng, B. Zhang, K. Jin, S. Chen, Z. Ren, & Y. Yu, “Realizing a rechargeable high‐performance Cu–Zn battery by adjusting the solubility of Cu2+,” Advanced Functional Materials, vol. 29, 2019, Art. no. 1905979.

[16]  N. Fitrya, S.P. Wirman, and R.D. Rahayu, “Environmentally friendly emergency lighting system using bio batteries from pineapple skin waste as energy source,” Jurnal Ilmu Fisika, vol 13, no. 2, pp. 118–125, 2021.

[17]  M. Christwardana and A. Y. Maulana, “Exploring ambarella's potential as an eco-friendly zinc-copper biobattery electrolyte: preliminary electrochemistry study,” Analytical And Bioanalytical Electrochemistry, vol. 15, no. 12, pp. 1074–1085, 2023.

[18]  T. Gonfa. S. Teketle, and T.Kiros, “Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in-vitro antioxidant activity evaluation of cadaba rotundifolia forssk leaf extracts,” Cogent Food & Agriculture, vol. 6, no. 1, 2020, Art. no. 1853867.

[19]  T. K. Patle, K. Shrivas. R, Kurrey. S, Upadhyay. R, Jangde and R. Chauhan, “Phytochemical screening and determination of phenolics and flavonoids in dillenia pentagyna using uv–vis and ftir spectroscopy,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 242, pp. 118717. 2020.

[20]  B. Hamzah, S. Rahmawati, W. S. Suwena, M. F. Hardani, and R. Hardani, “Analysis of tannin in sapodilla fruit (Manilkara zapota (l) van royen),” Rasayan Journal of Chemistry, vol. 13, no. 04, pp. 2243–2248, 2020.

[21]  M. A. Leba, E. G. Boelan, M. M. Taek, S. D. Mau, J. D. C, Ruas. M. B, Tukan and A. B. Baunsele, “Exploring purple sweet potato pigment as an eco-friendly titration indicator for acid determination,” Tropical Journal of Natural Product Research, vol. 8, no. 6, p. 7403, 2024.

[22]  C. Theodora, I. Gunawan, and I. Swantara, “Isolasi dan identifikasi golongan flavonoid pada ekstrak etil asetat daun gedi (Abelmoschus manihot L.),” Jurnal Kimia (Journal of Chemistry), vol. 3, no. 2,  pp. 131–138, 2019.

[23]  J. B. Harborne, Metode Fitokimia: Penuntun Cara Modern Menganalisis Tumbuhan. Bandung, Indonesia: Penerbit ITB, vol. 78, 1987.

[24]  M. Barros, A. M. Coimbra, A. Barros, D. Rutledge, and I. Delgadillo, “Analysis of uronic acid in pectic material by FT-IR spectroscopy,” in Spectroscopy of Biological Molecules: Modern Trends, P. Carmona, R. Navarro, and A. Hernanz, Eds. Dordrecht: Springer, pp. 275–276, 1997.

[25]  M. A. Beluomini, J. L. D. Silva, and N. R. Stradiotto, “Determination of uronic acids in sugarcane bagasse by anion-exchange chromatography using an electrode modified with copper nanoparticles,” Analytical Methods, vol. 7, no. 6, pp. 2347–2353. 2015.

[26]  M. C. Monteiro and M. T. Koper, “Alumina contamination through polishing and its effect on hydrogen evolution on gold electrodes,” Electrochimica Acta, vol. 325, 2019, Art. no. 134915.

[27]  L. B. Sheridan, D. K. Hensley, N. V. Lavrik, S. C. Smith, V. Schwartz, C. Liang and A. J. Rondinone, “Growth and electrochemical characterization of carbon nanospike thin film electrodes,” Journal of The Electrochemical Society, vol. 161, no. 9, p. H558, 2014.

[28]  G. Strack, S. Babanova, K. E. Farrington, H. R. Luckarift, P. Atanassov, and G. R Johnson, “Enzyme-modified buckypaper for bioelectrocatalysis,” Journal of The Electrochemical Society, vol. 160, no. 7, p. G3178, 2013.

[29]  E. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 101, no. 1, pp. 19–28, 1979.

[30]  W. Zhang, X. Chen, Y. Wang, L. Wu, and Y. Hu,  “Experimental and modeling of conductivity for electrolyte solution systems,” ACS Omega, vol. 5, no. 35, pp. 22465–22474, 2020.

[31]  D. A. D. Silva, A. Messias, E. E. Fileti, A. Pascon, D. V. Franco, L. M. Da Silva, and H. G. Zanin. “Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies,” Materials Advances, vol. 3, no. 1, pp. 611–623, 2022.

[32]  D. J. Swartling and C. Morgan, “Lemon cells revisited-the lemon-powered calculator,” Journal of Chemical Education, vol. 75, no. 2,  p. 181, 1998.

[33]  Z. Wang, X. Li, Z. Yang, H. Guo, Y. J. Tan, G. J. Susanto, and B. C. K. Tee, “Fully transient stretchable fruit‐based battery as safe and environmentally friendly power source for wearable electronics,” Ecomat, vol. 1, p. E12073, 2021.

[34]  Q.  Wang, C. Sun, Y. Gu, L. Wang, Q. Xu, H. Dong, and X. Lu, “Synergistic promotion of ascorbic acid and sodium citrate to the stability of electrolyte for electrolytic iron production,” Journal of Applied Electrochemistry, vol. 54, pp. 1–14,  2024.

[35]  S. M. S. Nadeem and S. M. R. Ullah, “The study of ionic interactions of monovalent electrolytes in aqueous polyvinyl alcohol and polyacrylamide by conductance method,” Ionics, vol. 26, pp. 2927–2940, 2020.

[36]  G. Wang, L. Zhang, and J. Zhang, “A review of electrode materials for electrochemical supercapacitors,” Chemical Society Reviews, vol. 41, no. 2, pp. 797–828, 2012.

[37]  Y. J. Sa, C. W. Lee, S. Y. Lee, J. Na, U. Lee, and Y. J. Hwang, “Catalyst–electrolyte interface chemistry for electrochemical CO2 reduction,” Chemical Society Reviews, vol. 49, no. 18, pp. 6632–6665, 2020.

[38]  K. A. Khan, L. Hassan, A. K. M. Obaydullah, S. M. Azharul Islam, M. A. Mamun, T. Akter, and M. Shahjahan, “Bioelectricity: a new approach to provide the electrical power from vegetative and fruits at off-grid region,” Microsystem Technologies, vol. 26, pp. 3161–3172, 2020.

[39]  H. H. Djumat, “Upaya peningkatan hasil belajar siswa pada materi larutan asam basa dengan menggunakan pendekatan inkuiri,” Edukasi, vol. 14, no. 2, 2016, doi: 10.33387/j.edu.v14i2.196.

[40]  W. R. Smith, “A precise, simple and general basic le châtelier principle based on elementary calculus: what le châtelier had in mind?,” Journal of Mathematical Chemistry, vol. 58, no. 8, pp. 1548–1570, 2020.

Full Text: PDF

DOI: 10.14416/j.asep.2024.11.001

Refbacks

  • There are currently no refbacks.