Page Header

ZrO2 Nanoparticles Filler-Based Mixed Matrix Polyethersulfone/Cellulose Acetate Microfiltration Membrane for Oily Wastewater Separation

Sura Mawlood Abbas, Sama Mohammed Al-Jubouri

Abstract


Membrane technology has emerged as a dynamic field of study in academia and industry for treating produced oily wastewater. ZrO2 nanoparticles (ZrO2 NPs) filler-based mixed matrix polyethersulfone/cellulose acetate microfiltration membranes were fabricated and inspected in the oily wastewater remediation. The fabricated bare PES membrane, PES/CA blended polymers membrane, and PES/CA blended polymers incorporating ZrO2 NPs (ZrO2@PES/CA) membranes by phase inversion technique were inspected by field emission scanning electron microscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, and measurement of water contact angle and porosity. The ZrO2@PES/CA membrane which consisted of 0.5 wt.% ZrO2 NPs (0.5%ZrPC) afforded increased hydrophilicity and reduced water contact angle from 70° for P membrane to 30.23°. Also, the 0.5%ZrPC membrane gave pure water flux of 88.89 L/m2.h, high oil rejection of 98.2% and showed remarkable antifouling capacity with a high flux recovery ratio of 89.3% and relative flux reduction of 34.3%. The effect of transmembrane pressure (1, 2, 3, and 4 bar), feed temperature (25, 40, and 50 °C), and an initial oil concentration (250, 500, 750, and 1000 mg/L) on the permeation flux and oil rejection of the 0.5%ZrPC membrane was investigated. The results revealed that ZrO2@PES/CA membranes have a significant potential for effective oil removal with high permeability and antifouling ability. The 0.5%ZrPC membrane confirmed its durability and reusability when kept an acceptable oil removal after 5 cycles.

Keywords



[1]    T. Ahmad, X. Liu, and C. Guria, “Preparation of polyvinyl chloride (PVC) membrane blended with acrylamide grafted bentonite for oily water treatment,” Chemosphere, vol. 310, 2023, Art. no. 136840, doi: 10.1016/j.chemosphere.2022.136840.

[2]    S. Koushkbaghi, S. Jamshidifard, A. ZabihiSahebi, A. Abouchenari, M. Darabi, and M. Irani, “Synthesis of ethyl cellulose/aluminosilicate zeolite nanofibrous membranes for oil–water separation and oil absorption,” Cellulose, vol. 26, no. 18, pp. 9787–9801, Dec. 2019, doi: 10.1007/ s10570-019-02738-w.

[3]    S. Putatunda, S. Bhattacharya, D. Sen, and C. Bhattacharjee, “A review on the application of different treatment processes for emulsified oily wastewater,” International Journal of Environmental Science and Technology, vol. 16, no. 5, pp. 2525–2536, 2019, doi: 10.1007/s13762-018-2055-6.

[4]    S. Hakak, W. Z. Khan, G. A. Gilkar, N. Haider, M. Imran, and M. S. Alkatheiri, “Industrial wastewater management using blockchain technology: Architecture, requirements, and future directions,” IEEE Internet of Things Magazine, vol. 3, no. 2, pp. 38–43, 2020, doi: 10.1109/iotm.0001.1900092.

[5]    K. Abuhasel, M. Kchaou, M. Alquraish, Y. Munusamy, and Y. T. Jeng, “Oilywastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities,” Water (Switzerland), vol. 13, no. 7, 2021, doi: 10.3390/w13070980.

[6]    A. I. Adetunji and A. O. Olaniran, “Treatment of industrial oily wastewater by advanced technologies: A review,” Applied Water Science, vol. 11, no. 6, pp. 1–19, 2021, doi: 10.1007/s13201-021-01430-4.

[7]    S. A. Sadek, S. M. Al-Jubouri, and S. Al-Batty, “Investigating the fouling models of the microfiltration mixed matrix membranes-based oxide nanoparticles applied for oil-in-water emulsion separation,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 25, no. 2, pp. 1–16, 2024, doi: 10.31699/ijcpe.2024.2.1.

[8]    S. Jamaly, A. Giwa, and S. W. Hasan, “Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities,” Journal of Environmental Sciences, vol. 37, pp. 15–30, 2015, doi: 10.1016/j.jes.2015.04.011.

[9]    J. Lei and Z. Guo, “PES asymmetric membrane for oil-in-water emulsion separation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 626, 2021, Art. no. 127096, doi: 10.1016/j.colsurfa.2021.127096.

[10] C. Sun, T. O. Leiknes, J. Weitzenböck, and B. Thorstensen, “Development of a biofilm-MBR for shipboard wastewater treatment: The effect of process configuration,” Desalination, vol. 250, no. 2, pp. 745–750, 2010, doi: 10.1016/j.desal. 2008.11.034.

[11] H. H. Sokker, N. M. El-Sawy, M. A. Hassan, and B. E. El-Anadouli, “Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization,” Journal of Hazardous Materials, vol. 190, no. 1–3, pp. 359–365, 2011, doi: 10.1016/j.jhazmat.2011.03.055.

[12] H. N. Alfalahy and S. M. Al-Jubouri, “Preparation and application of polyethersulfone ultrafiltration membranincorporating NaX zeolite for lead ions removal from aqueous solutions,” Desalination and Water Treatment, vol. 248, pp. 149–162, 2022, doi: 10.5004/dwt.2022.28072.

[13] M. H. Salih and A. F. Al-Alawy, “Crystallization process as a final part of zero liquid discharge system for treatment of east baghdad oilfield produced water,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 23, no. 1, pp. 15–22, 2022, doi: 10.31699/IJCPE.2022.1.3 1.

[14]  A. E. Jery, A. Ahsan, S. S. Sammen, A. Shanableh, D. Sain, A. A. Ramírez-Coronel, M. A. Uddin, M. A. J. Maktoof, M. Shafiquzzaman, and N. Al-Ansari, “Industrial oily wastewater treatment by microfiltration using silver nanoparticle-incorporated poly (acrylonitrile-styrene) membrane,” Environmental Sciences Europe, vol. 35, no. 1, 2023, doi: 10.1186/s12302-023-00764-x.

[15] N. Abdul, H. Nordin, A. F. Ismail, and N. Misdan, “Modified zeolite/polysulfone mixed matrix membrane for enhanced CO2/CH4 separation,” Membrane, vol. 11, p. 630, 2021, doi: 10.3390/membranes11080630.

[16] C. de Morais Coutinho, M. C. Chiu, R. C. Basso, A. P. B. Ribeiro, L. A. G. Gonçalves, and L. A. Viotto, “State of art of the application of membrane technology to vegetable oils: A review,” Food Research International, vol. 42, no. 5–6, pp. 536–550, 2009, doi: 10.1016/ j.foodres.2009.02.010.

[17] T. Mohammadi and A. Esmaeelifar, “Wastewater treatment using ultrafiltration at a vegetable oil factory,” Desalination, vol. 166, no. 1–3, pp. 329–337, 2004, doi: 10.1016/j.desal.2004.06.087.

[18] A. Salahi, I. Noshadi, R. Badrnezhad, B. Kanjilal, and T. Mohammadi, “Nano-porous membrane process for oily wastewater treatment: Optimization using response surface methodology,” Journal of Environmental Chemical Engineering, vol. 1, no. 3, pp. 218–225, 2013, doi: 10.1016/ j.jece.2013.04.021.

[19] A. Salahi, A. Gheshlaghi, T. Mohammadi, and S. S. Madaeni, “Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater,” Desalination, vol. 262, no. 1–3, pp. 235–242, 2010, doi: 10.1016/j.desal.2010.06.021.

[20] B. Bolto, J. Zhang, X. Wu, and Z. Xie, “A review on current development of membranes for oil removal from wastewaters,” Membranes (Basel), vol. 10, no. 4, pp. 1–18, 2020, doi: 10.3390/ membranes10040065.

[21] N. A. Ahmad, P. S. Goh, Z. A. Karim, and A. F. Ismail, “Thin film composite membrane for oily waste water treatment: Recent advances and challenges,” Membranes (Basel), vol. 8, no. 4, Oct. 2018, doi: 10.3390/membranes8040086.

[22] S. Yadav and S. Kamsonlian, “Progress on the development of techniques to remove contaminants from wastewater: A review,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6729, doi: 10.14416/ j.asep.2023.02.001.

[23] S. A. Sadek and S. M. Al-Jubouri, “Structure and performance of polyvinylchloride microfiltration membranes improved by green silicon oxide nanoparticles for oil-in-water emulsion separation,” Materials Today Sustainability, vol. 24, 2023, Art. no. 100600, doi: 10.1016/j.mtsust. 2023.100600.

[24] A. Alammar, S. H. Park, C. J. Williams, B. Derby, and G. Szekely, “Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment,” Journal of Membrane Science, vol. 603, 2020, Art. no. 118007, doi: 10.1016/j.memsci.2020.118007.

[25] S. Ghimire, M. Flury, E. J. Scheenstra, and C. A. Miles, “Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation,” Science of the Total Environment, vol. 703, 2020, Art. no. 135577, doi: 10.1016/j.scitotenv.2019.135577.

[26] M. Zoubeik, M. Ismail, A. Salama, and A. Henni, “New Developments in Membrane Technologies Used in the Treatment of Produced Water: A Review,” Arabian Journal for Science and Engineering, vol. 43, no. 5, pp. 2093–2118, 2018, doi: 10.1007/s13369-017-2690-0.

[27] A. I. Osman, Z. Chen, A. M. Elgarahy, M. Farghali, I. M. A. Mohamed, A. K. Priya, H. B. Hawash, and P. S. Yap, “Membrane technology for energy saving: Principles, techniques, applications, challenges, and prospects,” Advanced Energy and Sustainability Research, vol. 5, no. 5, 2024, doi: 10.1002/aesr.202400011.

[28] S. M. Al-Jubouri, S. Al-Batty, R. K. S. Al-Hamd, R. Sims, M. W. Hakami, and M. H. SK, “Sustainable environment through using porous materials: A review on wastewater treatment,” Asia-Pacific Journal of Chemical Engineering, vol. 18, no. 4, 2023, doi: 10.1002/apj.2941.

[29] M. H. Xu, R. Xie, X. J. Ju, W. Wang, Z. Liu, and L. Y. Chu, “Antifouling membranes with bi-continuous porous structures and high fluxes prepared by vapor-induced phase separation,” Journal of Membrane Science, vol. 611, 2020, Art. no. 118256, doi: 10.1016/j.memsci.2020. 118256.

[30] B. S. Lalia, V. Kochkodan, R. Hashaikeh, and N. Hilal, “A review on membrane fabrication: Structure, properties and performance relationship,” Desalination, vol. 326, pp. 77–95, 2013, doi: 10.1016/j.desal.2013.06.016.

[31] X. Dong, D. Lu, T. A. L. Harris, and I. C. Escobar, “Polymers and solvents used in membrane fabrication: A review focusing on sustainable membrane development,” Membranes (Basel), vol. 11, no. 5, 2021, doi: 10.3390/ membranes11050309.

[32] N. H. M. Safari, S. Rozali, A. R. Hassan, and R. Osman, “Inducing the skinned-oriented asymmetrical nanofiltration membranes via controlled evaporation times in dry/wet phase inversion process,” Applied Science and Engineering Progress, vol. 16, no. 2, 2023, Art. no. 6015, doi: 10.14416/j.asep.2022.05.007.

[33] M. Khorsand-Ghayeni, J. Barzin, M. Zandi, and M. Kowsari, “Fabrication of asymmetric and symmetric membranes based on PES/PEG/DMAc,” Polymer Bulletin, vol. 74, no. 6, pp. 2081–2097, 2017, doi: 10.1007/s00289-016-1823-z.

[34] A. G. Saleem and S. M. Al-Jubouri, “Efficient separation of organic dyes using polyvinylidene fluoride/polyethylene glycol-tin oxide (PVDF/ PEG-SnO2) nanoparticles ultrafiltration membrane,” Applied Science and Engineering Progress, vol. 17, no. 4, 2024, Art. no. 7523, doi: 10.14416/ j.asep.2024.08.001.

[35] M. B. Ghandashtani, F. Z. Ashtiani, M. Karimi, and A. Fouladitajar, “A novel approach to fabricate high performance nano-SiO2 embedded PES membranes for microfiltration of oil-in-water emulsion,” Applied Surface Science, vol. 349, pp. 393–402, 2015, doi: 10.1016/j.apsusc. 2015.05.037.

[36] H. N. Alfalahy and S. M. Al-Jubouri, “A Comparison Study for The Performance of polyethersulfone ultrafiltration mixed matrix membranes in the removal of heavy metal ions from aqueous solutions,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 23, no. 2, pp. 19–25, 2022, doi: 10.31699/ijcpe. 2022.2.3.

[37] X. Chen, G. Huang, C. An, R. Feng, Y. Wu, and C. Huang, “Superwetting polyethersulfone membrane functionalized with ZrO2 nanoparticles for polycyclic aromatic hydrocarbon removal,” Journal of Materials Science and Technology, vol. 98, pp. 14–25, 2022, doi: 10.1016/j.jmst. 2021.01.063.

[38] M. Batool, A. Shafeeq, B. Haider, and N. M. Ahmad, “TiO2 nanoparticle filler-based mixed-matrix PES/CA nanofiltration membranes for enhanced desalination,” Membranes (Basel), vol. 11, no. 6, 2021, doi: 10.3390/membranes 11060433.

[39] S. Saki and N. Uzal, “Preparation and characterization of PSF/PEI/CaCO3 nanocomposite membranes for oil/water separation,” Environmental Science and Pollution Research, vol. 25, no. 25, pp. 25315–25326, 2018, doi: 10.1007/s11356-018-2615-9.

[40] I. C. Escobar and B. Van Der Bruggen, “Microfiltration and ultrafiltration membrane science and technology,” Journal of Applied Polymer Science, vol. 132, no. 21, 2015, doi: 10.1002/app.42002.

[41] R. Abu-Zurayk, N. Alnairat, A. Khalaf, A. A. Ibrahim, and G. Halaweh, “Cellulose Acetate membranes: Fouling types and antifouling strategies—a brief review,” Processes, vol. 11, p. 489, 2023, doi: 10.3390/pr11020489.

[42]  K. J. Diainabo, N. H. Mthombeni, and M. Motsa, “Preparation and characterization of hybrids of cellulose acetate membranes blended with polysulfone and embedded with silica for Copper(II), Iron(II) and Zinc(II) removal from contaminated solutions,” Journal of Polymers and the Environment, vol. 29, no. 11, pp. 3587–3604, 2021, doi: 10.1007/s10924-021-02094-6.

[43] B. Vani, M. Shivakumar, S. Kalyani, and S. Sridhar, “TiO2 nanoparticles incorporated high-performance polyphenyl sulfone mixed matrix membranes for ultrafiltration of domestic greywater,” Iranian Polymer Journal, vol. 30, no. 9, pp. 917–934, 2021, doi: 10.1007/s13726-021-00945-6.

[44] S. Mokhtari, A. Rahimpour, A. A. Shamsabadi, S. Habibzadeh, and M. Soroush, “Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles”, Applied Surface Science, vol. 393, pp. 93–102, 2017, doi: 10.1016/j.apsusc.2016.10.005.

[45] E. Y. Kim, H. S. Kim, D. Kim, J. Kim, and P. S. Lee, “Preparation of mixed matrix membranes containing ZIF-8 and UiO-66 for multicomponent light gas separation,” Crystals, vol. 9, no. 1, 2019, doi: 10.3390/cryst9010015.

[46] M. Abdullah and S. Al-Jubouri, “Implementation of hierarchically porous zeolite-polymer membrane for Chromium ions removal,” in IOP Conference Series: Earth and Environmental Science, 2021. doi: 10.1088/1755-1315/779/1/012099.

[47] A. M. Asiri, V. Pugliese, F. Petrosino, S. B. Khan, K. A. Alamry, S. Y. Alfifi, H. M. Marwani, M. M. Alotaibi, D. Mukherjee, and S. Chakraborty, “Photocatalytic degradation of textile dye on blended cellulose acetate membranes,” Polymers (Basel), vol. 14, no. 3, 2022, doi: 10.3390/polym14030636.

[48] C. N. Matindi, M. Hu, S. Kadanyo, Q. V. Ly, N. N. Gumbi, D. S. Dlamini, J. Li, Y. Hu, Z. Cui, and J. Li, “Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles,” Journal of Membrane Science, vol. 620, 2021, Art. no. 118868, doi: 10.1016/j.memsci.2020.118868.

[49] S. M. Abdullah, “Oily water treatment using ceramic memberane,” Journal of Engineering, vol. 17, no. 2, pp. 252–264, 2011.

[50] N. H. Ibrahim and S. M. Al-Jubouri, “Preparation and characterization of a hierarchically porous zeolite-carbon composite from economical materials and green method,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 24, no. 3, pp. 27–32, 2023, doi: 10.31699/IJCPE.2023.3.3.

[51] N. Maximous, G. Nakhla, W. Wan, and K. Wong, “Performance of a novel ZrO2/PES membrane for wastewater filtration,” Journal of Membrane Science, vol. 352, pp. 222–230, 2010, doi: 10.1016/j.memsci.2010.02.021.

[52] G. Arthanareeswaran and P. Thanikaivelan, “Fabrication of cellulose acetate-zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis,” Separation and Purification Technology, vol. 74, no. 2, pp. 230–235, 2010, doi: 10.1016/j.seppur. 2010.06.010.

[53] E. O. Ezugbe and S. Rathilal, “Membrane technologies in wastewater treatment: A review,” Membranes, vol. 10, no. 5, p. 89, 2020.

[54] M. Issaoui, S. Jellali, A. A. Zorpas, and P. Dutournie, “Membrane technology for sustainable water resources management: Challenges and future projections,” Sustainable Chemistry and Pharmacy, vol. 25, 2022, Art. no. 100590, doi: 10.1016/j.scp.2021.100590.

[55] A. Ali, E. Drioli, and F. Macedonio, “Membrane engineering for sustainable development: A perspective,” Applied Sciences, vol. 7, no. 10, 2017, doi: 10.3390/app7101026.

[56] I. S. Al-Husaini, A. R. M. Yusoff, W. J. Lau, A. F. Ismail, M. Z. Al-Abri, B. N. Al-Ghafri, and M. D. H. Wirzal, “Fabrication of polyethersulfone electrospun nanofibrous membranes incorporated with hydrous manganese dioxide for enhanced ultrafiltration of oily solution,” Separation and Purification Technology, vol. 212, pp. 205–214, 2019, doi: 10.1016/j.seppur.2018.10.059.

[57] R. J. Gohari, E. Halakoo, W. J. Lau, M. A. Kassim, T. Matsuura, and A. F. Ismail, “Novel polyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process,” RSC Advances, vol. 4, no. 34, pp. 17587–17596, 2014, doi: 10.1039/c4ra00032c.

[58] S. Huang, R. H. A. Ras, and X. Tian, “Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling,” Current Opinion in Colloid and Interface Science, vol. 36, pp. 90–109, 2018, doi: 10.1016/j.cocis. 2018.02.002.

[59] A. Salahi, T. Mohammadi, R. M. Behbahani, and M. Hemmati, “Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: Synthesis, characterization, ANFIS modeling, and performance,” Journal of Environmental Chemical Engineering, vol. 3, no. 1, pp. 170–178, 2015, doi: 10.1016/j.jece. 2014.10.021.

[60] A. Alpatova, E. S. Kim, X. Sun, G. Hwang, Y. Liu, and M. Gamal El-Din, “Fabrication of porous polymeric nanocomposite membranes with enhanced anti-fouling properties: Effect of casting composition,” Journal of Membrane Science, vol. 444, pp. 449–460, 2013, doi: 10.1016/j.memsci.2013.05.034.

[61]  W. M. Nielen, J. D. Willott, J. A. R. Galicia, and W. M. De Vos, “Effect of solution viscosity on the precipitation of PSaMA in aqueous phase separation-based membrane formation,” Polymers (Basel), vol. 13, no. 11, 2021, doi: 10.3390/ polym13111775.

[62] T. Rajasekhar, M. Trinadh, P. Veera Babu, A. V. S. Sainath, and A. V. R. Reddy, “Oil-water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group,” Journal of Membrane Science, vol. 481, pp. 82–93, 2015, doi: 10.1016/j.memsci.2015.01.030.

[63] S. Mei, C. Xiao, and X. Hu, “Preparation of Porous PVC Membrane via a Phase Inversion Method from PVC/DMAc/Water/Additives,” Journal of Applied Polymer Science, vol. 116, no. 5, pp. 2658–2667, 2011, doi: 10.1002/app.

[64] L. F. Padilha and C. P. Borges, “PVC membranes prepared via non-solvent induced phase separation process,” Brazilian Journal of Chemical Engineering, vol. 36, no. 1, pp. 497–509, 2019, doi: 10.1590/ 0104-6632.20190361s20170132.

[65] Y. M. Zheng, S. W. Zou, K. G. N. Nanayakkara, T. Matsuura, and J. P. Chen, “Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane,” Journal of Membrane Science, vol. 374, no. 1–2, pp. 1–11, 2011, doi: 10.1016/j.memsci.2011.02.034.

[66] H. Rabiee, S. Mojtaba Seyedi, H. Rabiei, N. Alvandifar, and A. Arya, “Preparation and characterization of PVC/PAN blend ultrafiltration membranes: Effect of PAN concentration and PEG with different molecular weight,” Desalination and Water Treatment, vol. 58, pp. 1–11, 2017, doi: 10.5004/dwt.2017.0094.

[67] F. Kouhestani, M. A. Torangi, A. Motavalizadehkakhky, R. Karazhyan, and R. Zhiani, “Enhancement strategy of polyethersulfone (PES) membrane by introducing pluronic F127/graphene oxide and phytic acid/graphene oxide blended additives: Preparation, characterization and wastewater filtration assessment,” Desalination and Water Treatment, vol. 171, pp. 44–56, 2019, doi: 10.5004/dwt.2019.24769.

[68] S. M. Abbas and S. M. Al-Jubouri, “High performance and antifouling zeolite@ polyethersulfone/cellulose acetate asymmetric membrane for efficient separation of oily wastewater,” Journal of Environmental Chemical Engineering, vol.  12, no. 3, 2024, Art. no. 112775, doi: 10.1016/j.jece.2024.112775.

[69] C. Evangeline, V. Pragasam, K. Rambabu, S. Velu, P. Monash, G.  Arthanareeswaran, and F. Banat, “Iron oxide modified polyethersulfone/ cellulose acetate blend membrane for enhanced defluoridation application,” Desalination and Water Treatment, vol. 156, pp. 177–188, 2019, doi: 10.5004/dwt.2018.23174.

[70] D. Ghazanfari, D. Bastani, and S. A. Mousavi, “Preparation and characterization of poly (vinyl chloride) (PVC) based membrane for wastewater treatment,” Journal of Water Process Engineering, vol. 16, pp. 98–107, 2017, doi: 10.1016/j.jwpe. 2016.12.001.

[71] Z. Alhalili, C. Romdhani, H. Chemingui, and M. Smiri, “Removal of dithioterethiol (DTT) from water by membranes of cellulose acetate (AC) and AC doped ZnO and TiO2 nanoparticles,” Journal of Saudi Chemical Society, vol. 25, no. 8, 2021, doi: 10.1016/j.jscs.2021.101282.

[72] W. Fang, G. Liang, J. Li, and S. Guo, “Microporous formation mechanism of biaxial stretching PA6/PP membranes with high porosity and uniform pore size distribution,” Polymers (Basel), vol. 14, no. 11, 2022, doi: 10.3390/polym14112291.

[73] A. A. R. Abdel-Aty, Y. S. A. Aziz, M. G. A.  Rehab, I. M. A. ElSherbiny, S. Panglisch, M. Ulbricht, and Ahmed S. G. Khalil, “High performance isotropic polyethersulfone membranes for heavy oil-in-water emulsion separation,” Separation and Purification Technology, vol. 253, 2020, Art. no. 117467, doi: 10.1016/ j.seppur.2020.117467.

[74] T. D. Kusworo, Qudratun, and D. P. Utomo, “Performance evaluation of double stage process using nano hybrid PES/SiO2-PES membrane and PES/ZnO-PES membranes for oily waste water treatment to clean water,” Journal of Environmental Chemical Engineering, vol. 5, pp. 6077–6086, 2017, doi: 10.1016/j.jece. 2017.11.044.

[75] M. Ebrahimi, D. Willershausen, K. S. Ashaghi, L. Engel, L. Placido, P. Mund, P. Bolduan, and P. Czermak, “Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment,” Desalination, vol. 250, no. 3, pp. 991–996, 2010, doi: 10.1016/j.desal.2009.09.088.

[76] N. Gao and Z. K. Xu, “Ceramic membranes with mussel-inspired and nanostructured coatings for water-in-oil emulsions separation,” Separation and Purification Technology, vol. 212, 2018, pp. 737–746, 2019, doi: 10.1016/j.seppur.2018.11.084.

[77] S. Tahazadeh, T. Mohammadi, and M. Ahmadzadeh, “Development of cellulose acetate /metal-organic framework derived porous carbon adsorptive membrane for dye removal applications,” Journal of Membrane Science, vol. 638, 2021, Art. no. 119692, doi: 10.1016/j.memsci.2021.119692.

[78] I. H. Dakhil, “Removal of kerosene from wastewater using locally sawdust,” in 1st International Conference of Southern Technical University, 2016, pp. 155–161.

[79] B. R. Simonović, D. Arandelović, M. Jovanović, B. Kovačević, L. Pezo, and A. Jovanović, “Removal of mineral oil and wastewater pollutants using hard coal,” Chemical Industry and Chemical Engineering Quarterly, vol. 15, no. 2, pp. 57–62, 2009, doi: 10.2298/ CICEQ0902057S.

[80] K. Masoudnia, A. Raisi, A. Aroujalian, and M. Fathizadeh, “A hybrid microfiltration/ultrafiltration membrane process for treatment of oily wastewater,” Desalination and Water Treatment, vol. 55, no. 4, pp. 901–912, 2015, doi: 10.1080/19443994.2014.922501.

[81] A. F. Al-Alawy and S. M. A.–Musawi, “Microfiltration membranes for separating oil/water emulsion,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 14, no. 4, pp. 53–70, 2013, doi: 10.31699/IJCPE.2013.4.7.

[82] H. F. Makki, A. F. Al-Alawy, M. H. Al-Hassani, and Z. W. Rashad, “Membranes separation process for oily wastewater treatment,” Journal of Engineering, vol. 17, no. 2, pp. 235–252, 2011.

[83] N. U. Barambu, M. R. Bilad, N. Huda, N. A. H. M. Nordin, M. A. Bustam, A. Doyan, and J. Roslan, “Effect of membrane materials and operational parameters on performance and energy consumption of oil/water emulsion filtration,” Membranes (Basel), vol. 11, no. 5, 2021, doi: 10.3390/membranes11050370.

[84] A. Damayanti, R. Z. Sholihah, T. K. Sari, N. Karnaningroem, and A. Moesriati, “The performance of restaurant wastewater treatment by using zeolite nanofiltration membrane,” ARPN Journal of Engineering and Applied Sciences, vol. 14, no. 15, pp. 2670–2674, 2019.

[85]  A. Mansourizadeh and A. Javadi Azad, “Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil-water separation,” Journal of Polymer Research, vol. 21, p. 375, 2014, doi: 10.1007/ s10965-014-0375-x.

[86] M. A. Masuelli, “Ultrafiltration of oil/water emulsions using PVDF/PC blend membranes,” Desalination and Water Treatment, vol. 53, no. 3, pp. 569–578, 2015, doi: 10.1080/19443994. 2013.846539.

[87] S. A. Sadek and S. M. Al-Jubouri, “Highly efficient oil-in-water emulsion separation based on innovative stannic oxide/polyvinylchloride (SnO2/PVC) microfiltration membranes,” Journal of Industrial and Engineering Chemistry, In press, Jun. 2024, doi: 10.1016/j.jiec.2024.06.016.

Full Text: PDF

DOI: 10.14416/j.asep.2024.10.001

Refbacks

  • There are currently no refbacks.